Citation: Xin ZHOU, Zhi ZHANG, Piao CHEN, Shui-Jin YANG, Yun YANG. Preparation and Photocatalytic Degradation Performance of Br-Doped Br2WO6 Microsphere[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(9): 1716-1728. doi: 10.11862/CJIC.2022.177 shu

Preparation and Photocatalytic Degradation Performance of Br-Doped Br2WO6 Microsphere

Figures(18)

  • Bismuth nitrate pentahydrate and sodium tungstate dihydrate were used as raw materials, and cetyltrimethylammonium bromide (CTAB) was used as bromine source to achieve Br-doped Bi2WO 6. By adjusting the content of CTAB, Bi2WO6 catalysts with different Br doping amounts were prepared by hydrothermal method. The antibiotics ciprofloxacin and norfloxacin were used as pollutants to test the photocatalytic performance of the Br - doped Bi2WO6 catalyst. The results showed that the 2% (molar fraction) doped Bi2WO6 had the best photocatalytic degradation performance compared to pure Bi2WO6. In addition, through a series of tests such as X-ray powder diffraction, Fourier transform infrared spectra, scanning electron microscope, photoluminescence spectra, UV-Vis diffuse reflection spectra, Raman, and X-ray photoelectron spectra, the phase composition, micro morphology, photo-generated charge separation rate, and optical properties of the Br-doped catalyst were analyzed. The free radical capture experiments were carried out and the possible photocatalytic mechanisms were proposed.
  • 加载中
    1. [1]

      LIANG M J, DENG N, XIANG X Y, MEI Y, YANG Z Y, YANG Y, YANG S J. Bi/BiVO4 & Bi4V2O11 Composite Catalysts: Preparation and Photocatalytic Performance[J]. Chinese J. Inorg. Chem., 2019,35(2):263-270.  

    2. [2]

      DUAN F, ZHANG Q, WEI Q F, SHI D J, CHEN M Q. Control of Photocatalytic Property of Bismuth - Based Semiconductor Photocatalysts[J]. Progress in Chemistry, 2014,26(1):30-40.  

    3. [3]

      HE Y P, JIN X Y, LI W Z, YANG S J, LÜ B L. Synthesis and Photocatalytic Properties of Bi2WO6/UiO - 66 Composite[J]. Chinese J. Inorg. Chem., 2019,35(6):996-1004.  

    4. [4]

      ZOU C T, ZHANG Z, LIAO W J, YANG S J. Enhancement of Photocatalytic Performance of Layered Bi2MoO6 by Ferroelectric Polarization[J]. Chinese J. Inorg. Chem., 2020,36(9):1717-1727.  

    5. [5]

      Babic S, Perisa M, Skoric I. Photolytic Degradation of Norfloxacin, Enrofloxacin and Ciprofloxacin in Various Aqueous Media[J]. Chemosphere, 2013,91(11):1635-1642. doi: 10.1016/j.chemosphere.2012.12.072

    6. [6]

      Zhao Y Y, Liang X H, Hu X Y, Fan J. rGO/Bi2WO6 Composite as a Highly Efficient and Stable Visible - Light Photocatalyst for Norfloxacin Degradation in Aqueous Environment[J]. J. Colloid Interface Sci., 2021,589:336-346. doi: 10.1016/j.jcis.2021.01.016

    7. [7]

      Zou C T, Liang M J, Yang Z Y, Zhou X, Yang Y, Yang S J. Flower-like Bi2SiO5/Bi 4MoO9 Heterostructures for Enhanced Photocatalytic Degradation of Ciprofloxacin[J]. Nanotechnology, 2020,31345604. doi: 10.1088/1361-6528/ab912f

    8. [8]

      Wang R, Xu M, Xie J W, Ye S Y, Song X L. A Spherical TiO2-Bi2WO6 Composite Photocatalyst for Visible-Light Photocatalytic Degradation of Ethylene[J]. Colloids Surf. A, 2020,602:125-148.

    9. [9]

      Dong W Y, Yao Y W, Li L, Sun Y J, Hua W M, Zhuang G S, Zhao D Y, Yan S W, Song W H. Three -Dimensional Interconnected Mesoporous Anatase TiO2 Exhibiting Unique Photocatalytic Performances[J]. Appl. Catal. B-Environ., 2017,217:293-302. doi: 10.1016/j.apcatb.2017.05.083

    10. [10]

      Farbod M, Kajbafvala M. Surface Modification of TiO2 Nanoparticles by Magnetic Ions: Synthesis and Application in Enhancement of Photocatalytic Performance[J]. Appl. Catal. B-Environ., 2017,219:344-352. doi: 10.1016/j.apcatb.2017.07.060

    11. [11]

      Tachikawa T, Yamashita S, Majima T. Evidence for Crystal - Face - Dependent TiO2 Photocatalysis from Single - Molecule Imaging and Kinetic Analysis[J]. J. Am. Chem. Soc., 2011,133(18):7197-7204. doi: 10.1021/ja201415j

    12. [12]

      Wang A, Wu S J, Dong J L, Wang R X, Wang J W, Zhang J L, Zhong S X, Bai S. Interfacial Facet Engineering on the Schottky Barrier Between Plasmonic Au and TiO2 in Boosting the Photocatalytic CO2 Reduction under Ultraviolet and Visible Light Irradiation[J]. Chem. Eng. J., 2021,404:127-145.

    13. [13]

      Kannappan P G, Nagarajan V M, Abhishek K, Rajagopal M, Goutham R. Present Applications of Titanium Dioxide for the Photocatalytic Removal of Pollutants from Water: A Review[J]. J. Environ. Manage., 2020,270110906. doi: 10.1016/j.jenvman.2020.110906

    14. [14]

      Tammanoon C, Varanya S, Tanyaporn P, Sujittra Y, Khuanjit H, Suwat N. Enhanced Photocatalytic Performance of ZnO/ Bi2WO6 Heterojunctions toward Photodegradation of Fluoroquinolone - Based Antibiotics in Wastewater[J]. J. Phys. Chem. Solids, 2021,153109995. doi: 10.1016/j.jpcs.2021.109995

    15. [15]

      LI X W, WANG B, YIN W X, DI J, XIA J X, ZHU W S, LI H M. Cu2+ Modified g -C3N4 Photocatalysts for Visible Light Photocatalytic Properties[J]. Acta Phys.-Chem. Sin., 2020,36(3)1902001.  

    16. [16]

      Shi R, Huang G L, Lin J, Zhu Y F. Photocatalytic Activity Enhancement for Bi2WO 6 by Fluorine Substitution[J]. J. Phys. Chem. C, 2009,113:19633-19638. doi: 10.1021/jp906680e

    17. [17]

      Zhao Y Y, Wang Y B, Liu E Z, Fan J, Hu X Y. Bi2WO6 Nanoflowers: An Efficient Visible Light Photocatalytic Activity for Ceftriaxone Sodium Degradation[J]. Appl. Surf. Sci., 2018,436:854-864. doi: 10.1016/j.apsusc.2017.12.064

    18. [18]

      Qin Y Y, Li H, Lu J, Ding Y C, Ma C C, Liu X L, Liu Z, Huo P W, Yan Y S. Photocatalytic Degradation of 2-Mercaptobenzothiazole by a Novel Bi2WO6 Nanocubes/In(OH)3 Photocatalyst: Synthesis Process, Degradation Pathways and an Enhanced Photocatalytic Performance Mechanism Study[J]. Appl. Surf. Sci., 2019,481:1313-1326. doi: 10.1016/j.apsusc.2019.03.244

    19. [19]

      Guan Z L, Li X M, Wua Y, Chen Z, Huang X D, Wang D B, Yang Q, Liu J L, Tian S H, Chen X Y, Zhao H. AgBr Nanoparticles Decorated 2D/2D GO/Bi2 WO 6 Photocatalyst with Enhanced Photocatalytic Performance for the Removal of Tetracycline Hydrochloride[J]. Chem. Eng. J., 2021,410128283. doi: 10.1016/j.cej.2020.128283

    20. [20]

      Tahmasebi N, Maleki Z, Farahnak P. Enhanced Photocatalytic Activities of Bi2WO6/BiOCl Composite Synthesized by One - Step Hydrothermal Method with the Assistance of HCl[J]. Mater. Sci. Semicond. Process, 2019,89:32-40. doi: 10.1016/j.mssp.2018.08.026

    21. [21]

      He J Y, Liu Y L, Wang M, Wang Y W, Long F. Ionic Liquidhydrothermal Synthesis of Z-Scheme BiOBr/ Bi2WO6 Heterojunction with Enhanced Photocatalytic Activity[J]. J. Alloy. Compd., 2021,865158760. doi: 10.1016/j.jallcom.2021.158760

    22. [22]

      Lian X Y, Xue W H, Dong S, Liu E Z, Li H, Xu K Z. Construction of S - Scheme Bi2WO6/g - C3N4 Heterostructure Nanosheets with Enhanced Visible - Light Photocatalytic Degradation for Ammonium Dinitramide[J]. J. Hazard. Mater., 2021,412125217. doi: 10.1016/j.jhazmat.2021.125217

    23. [23]

      Sun J, Shen C H, Guo J, Guo H, Yin Y F, Xu X J, Fei Z H, Liu Z T, Wen X J. Highly Efficient Activation of Peroxymonosulfate by Co3O4/ Bi2WO 6 p-n Heterojunction Composites for the Degradation of Ciprofloxacin under Visible Light Irradiation[J]. J. Colloid Interface Sci., 2021,588:19-30. doi: 10.1016/j.jcis.2020.12.043

    24. [24]

      YANG B Y, LI H, SHANG N Z, FENG C, GAO S T, WANG C. Visible - Light Responsive Photocatalyst g - C3N4@BiOCl with Hollow Flower - like Structure: Preparation and Photocatalytic Performance[J]. Chinese J. Inorg. Chem., 2017,33(3):396-404.  

    25. [25]

      Huang Y K, Kang S F, Yang Y, Qin H F, Ni Z J, Yang S J, Li X. Facile Synthesis of Bi/Bi2WO6 Nanocomposite with Enhanced Photocatalytic Activity under Visible Light[J]. Appl. Catal. B-Environ., 2016,196:89-99. doi: 10.1016/j.apcatb.2016.05.022

    26. [26]

      Xiao X, Lu M L, Nan J M, Zou X X, Zhang W D, Liu S M, Wang S B. Rapid Microwave Synthesis of I - Doped Bi 4O5Br2 with Significantly Enhanced Visible - Light Photocatalysis for Degradation of Multiple Parabens[J]. Appl. Catal. B-Environ., 2017,218:398-408. doi: 10.1016/j.apcatb.2017.06.074

    27. [27]

      Qiang Z M, Liu X M, Li F, Li T H, Zhang M, Singh H, Huttula M, Cao W. Iodine Doped Z - Scheme Bi2O 2CO 3/Bi2WO6 Photocatalysts: Facile Synthesis Efficient Visible Light Photocatalysis and Photocat-alytic Mechanism[J]. Chem. Eng. J., 2021,403126327. doi: 10.1016/j.cej.2020.126327

    28. [28]

      Anukorn P, Phattranit D, Titipun T, Somchai T. Hydrothermal Synthesis and Characterization of Visible-Lightdriven 0-3wt% Br-doped Bi2MoO6 Photocatalysts[J]. J. Ceram. Soc. Jpn., 2017,125(6):513-515. doi: 10.2109/jcersj2.17010

    29. [29]

      Wu R Y, Song H B, Luo N, Ji G J. Hydrothermal Preparation of 3D Flower - like BiPO4 /Bi2WO6 Microsphere with Enhanced Visible - Light Photocatalytic Activity[J]. J. Colloid Interface Sci., 2018,524:350-359. doi: 10.1016/j.jcis.2018.03.031

    30. [30]

      Zhou Y X, Lv P F, Zhang W, Meng X D, He H, Zeng X H, Shen X S. Pristine Bi2WO6 and Hybrid Au - Bi2WO6 Hollow Microspheres with Excellent Photocatalytic Activities[J]. Appl. Surf. Sci., 2018,457:925-932. doi: 10.1016/j.apsusc.2018.07.024

    31. [31]

      Wu Q S, Cui Y, Yang L M, Zhang G Y, Gao D Z. Facile In-Situ Photocatalysis of Ag/Bi2WO6 Heterostructure with Obviously Enhanced Performance[J]. Sep. Purif. Technol., 2015,142:168-175. doi: 10.1016/j.seppur.2014.12.039

    32. [32]

      Zhang Y L, Zhao Y C, Xiong Z, Gao T, Gong B G, Liu P F, Liu J, Zhang J Y. Elemental Mercury Removal by I- - Doped Bi2WO6 with Remarkable Visible - Light - Driven Photocatalytic Oxidation[J]. Appl. Catal. B-Environ., 2021,282119534. doi: 10.1016/j.apcatb.2020.119534

    33. [33]

      Hoang L H, Phu N D, Peng H, Chen X B. High Photocatalytic Activity N - Doped Bi2WO 6 Nanoparticles Using a Two - Step Microwave - Assisted and Hydrothermal Synthesis[J]. J. Alloy. Compd., 2018,744:228-233. doi: 10.1016/j.jallcom.2018.02.094

    34. [34]

      Zhang G Y, Wang J J, Shen X Q, Wang J J, Wang B Y, Gao D Z. Br-Doped Bi2O2CO 3 Nanosheets with Improved Electronic Structure and Accelerated Charge Migration for Outstanding Photocatalytic Behavior[J]. Appl. Surf. Sci., 2019,470:63-73. doi: 10.1016/j.apsusc.2018.11.103

    35. [35]

      Wang Q Q, Zhu S L, Liang Y Q, Cui Z D, Yang X J, Liang C Y, Inoue A. One-Step Synthesis of Size-Controlled Br-Doped TiO2 Nanoparticles with Enhanced Visible - Light Photocatalytic Activity[J]. Mater. Res. Bull., 2017,86:248-256. doi: 10.1016/j.materresbull.2016.10.026

    36. [36]

      ZHOU X, FENG T, GAO S T, YANG L L, WANG Z C, WANG N, LIU C Y, FENG C, SHANG N Z, WANG C. Visible-Light Respon-sive Photocatalyst Ag/AgCl@NH2-UiO-66: Preparation and Photocat-alytic Performance[J]. Chinese J. Inorg. Chem., 2016,32(5):769-776.  

    37. [37]

      Gao S T, Liu W H, Shang N Z, Feng C, Wu Q H, Wang Z, Wang C. Integration of Plasmonic Semiconductor with Metal Organic Framework: A Case of Ag/AgCl@ZIF-8 with Enhanced Visible Light Photocatalytic Activity[J]. RSC Adv., 2014,4:61736-61742. doi: 10.1039/C4RA11364K

    38. [38]

      Gao S T, Feng T, Feng C, Shang N Z, Wang C. Novel Visible-Light-Responsive Ag/AgCl@ MIL - 101 Hybrid Materials with Synergistic Photocatalytic Activity[J]. J. Colloid Interface Sci., 2016,466:284-290. doi: 10.1016/j.jcis.2015.12.045

    39. [39]

      Wang J J, Tang L, Zeng G M, Liu Y N, Zhou Y Y, Deng Y C, Wang J J, Peng B. Plasmonic Bi Metal Deposition and g - C3N 4 Coating on Bi2WO6 Microspheres for Efficient Visible-Light Photocatalysis[J]. ACS Sustainable. Chem. Eng., 2017,5:1062-1072. doi: 10.1021/acssuschemeng.6b02351

    40. [40]

      ZHANG T, ZOU Z G, HE J Y, LONG F, WANG J L, MO S Y. Hydrothermal Synthesis and Visible - Light Photocatalytic Performance of Br- Doped Bi2WO6[J]. Chinese J. Inorg. Chem., 2017,33(6):954-962.  

    41. [41]

      Song R R, Chen N H, Han B, Yu S S, Wang Y, Liu K, Tong Z F, Zhang H B. Microwave Hydrothermal Fabrication of 3D Hierarchical Br/Bi2WO6 with Enhanced Photocatalytic Activity for Rhodamine B and Tetracycline Degradation[J]. Environ. Sci. Pollut. Res., 2021,28:36434-36452. doi: 10.1007/s11356-021-13289-8

    42. [42]

      Li H P, Deng Q H, Liu J Y, Hou W G, Du N, Zhang R J, Tao X T. Synthesis, Characterization and Enhanced Visible Light Photocatalytic Cactivity of Bi2MoO6/Zn-Al Layered Double Hydroxide Hierarchical Heterostructures[J]. Catal Sci. Technol., 2014,4:1028-1037. doi: 10.1039/C3CY00940H

    43. [43]

      Yang C M, Gao G M, Zhang J J, Liu R P, Fan R C, Zhao M, Wang Y W, Gan S C. Surface Oxygen Vacancy Induced Solar Light Activity Enhancement of CdWO4/Bi2O2CO3 Core-Shell Heterostructure Photocatalyst[J]. Phys. Chem. Chem. Phys., 2017,19:14431-14441. doi: 10.1039/C7CP02136D

    44. [44]

      Zhang Z, Zou C T, Yang S J, Yang Z Y, Yang Y. Ferroelectric Polarization Effect Promoting the Bulk Charge Separation for Enhance the Efficiency of Photocatalytic Degradation[J]. Chem. Eng. J., 2021,410128430. doi: 10.1016/j.cej.2021.128430

    45. [45]

      Chen P, Zhang Z, Yang S J, Yang Y, Sun Y. Synthesis of BiOCl/ ZnMoO4 Heterojunction with Oxygen Vacancy for Enhanced Photocatalytic Activity[J]. J. Mater. Sci.: Mater. Electron., 2021,32:23189-23205. doi: 10.1007/s10854-021-06805-6

    46. [46]

      Wang M, Han J, Guo P Y, Sun M Z, Zhang Y, Tong Z, You M Y, Lv C M. Hydrothermal Synthesis of B-Doped Bi2MoO6 and Its High Photocatalytic Performance for the Degradation of Rhodamine B[J]. J. Phys. Chem. Solids, 2018,113:86-93. doi: 10.1016/j.jpcs.2017.10.019

    47. [47]

      Xie J W, Xu M, Wang R, Ye S Y, Song X L. Three - Dimensional Porous Spherical TiO 2-Bi2WO 6 Decorated Grapheme Oxide Nanosheets Photocatalyst with Excellent Visible Light Catalytic Degradation of Ethylene[J]. Ceram. Int., 2021,47:14183-14193. doi: 10.1016/j.ceramint.2021.01.286

    48. [48]

      ZHANG Z, ZOU C T, YANG Z Y, YANG S J. One-Step Preparation and Photocatalytic Activity of Bi2MoO6/CoMoO4 Embroidery Ball Structure[J]. Chinese J. Inorg. Chem., 2020,36(8):1446-1456.  

  • 加载中
    1. [1]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    2. [2]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    3. [3]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    9. [9]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    16. [16]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    17. [17]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    18. [18]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    19. [19]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    20. [20]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

Metrics
  • PDF Downloads(7)
  • Abstract views(1140)
  • HTML views(265)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return