Citation: Zhong-Xuan XU, Ming-Feng SHI, Xu-Ling BAI, Ting-Ting YUAN. Semiconductive Ni-MOFs Based on 5-(Hydroxymethyl) Isophthalic Acid and Imidazole Derivatives: Synthesis, Crystal Structures, and Photocatalytic Properties[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(9): 1799-1807. doi: 10.11862/CJIC.2022.175 shu

Semiconductive Ni-MOFs Based on 5-(Hydroxymethyl) Isophthalic Acid and Imidazole Derivatives: Synthesis, Crystal Structures, and Photocatalytic Properties

  • Corresponding author: Zhong-Xuan XU, xuzhongxuan4201@163.com
  • Received Date: 8 October 2021
    Revised Date: 20 May 2022

Figures(7)

  • Two complexes {[Ni(HIPA) (2, 5-DPBI)1.5(H2O)]·2.25H2O}n (1) and [Ni(HIPA) (2, 5-DPBMI) (H2O)]n (2) (H2HIPA=5-(hydroxymethyl) isophthalic acid, 2, 5-DPBI=1, 1'-(2, 5-dimethyl-1, 4-phenylene)bis(1H-imidazole), 2, 5-DPBMI=1, 1'-(2, 5-dimethyl-1, 4 -phenylene)bis(4-methyl-1H-imidazole)) were synthesized via hydrothermal method. Structural analysis reveals that Ni(Ⅱ) centers have different coordination environments in the existence of different imidazole ligands. As a result, complex 1 possesses a 5-connected framework with the topological symbol of (42.66.82), while complex 2 shows a 4-connected framework with dia net. The powder X -ray diffraction further firms that complexes 1 and 2 are very stable not only in a normal organic solvent but also in water under UV light. Moreover, the UV-Vis spectra, Mott-Schottky measurements, and electrochemical impedance spectroscopy (EIS) demonstrate that complex 1 and 2 are typical n-type semiconductors with low resistance in charge transportation. Finally, photocatalytic tests confirm that complexes 1 and 2 have catalytic activity for the degradation of methylene blue.
  • 加载中
    1. [1]

      Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Metal-Organic Framework Materials as Chemical Sensors[J]. Chem. Rev., 2012,112(2):1105-1125. doi: 10.1021/cr200324ts://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201208010.htm

    2. [2]

      Tan C X, Han X, Li Z J, Liu Y, Cui Y. Controlled Exchange of Achiral Linkers with Chiral Linkers in Zr-Based UiO-68 Metal-Organic Framework[J]. J. Am. Chem. Soc., 2018,140(47):16229-16236. doi: 10.1021/jacs.8b09606

    3. [3]

      Zhao Y, Yang X G, Lu X M, Yang C D, Fan N N, Yang Z T, Wang L Y, Ma L F. {Zn6} Cluster Based Metal-Organic Framework with Enhanced Room-Temperature Phosphorescence and Optoelectronic Performances[J]. Inorg. Chem., 2019,58(9):6215-6221. doi: 10.1021/acs.inorgchem.9b00450

    4. [4]

      Dong J Q, Liu Y, Cui Y. Supramolecular Chirality in Metal-Organic Complexes[J]. Acc. Chem. Res., 2021,54(1):194-206. doi: 10.1021/acs.accounts.0c00604

    5. [5]

      Ding M, Yang L M, Zeng J H, Yan X W, Wang Q Q. Orderly MOF-Assembled Hybrid Monolithic Stationary Phases for Nano-Flow HPLC[J]. Anal. Chem., 2020,92(24):15757-15765. doi: 10.1021/acs.analchem.0c02706

    6. [6]

      Guan G X, Liu X, Yue Q, Gao E Q. Homochiral Metal-Organic Frameworks Embedding Helicity Based on a Semirigid Alanine Derivative[J]. Cryst. Growth Des., 2018,18(1):364-372.

    7. [7]

      Sun Y X, Sun W Y. Influence of Temperature on Metal-Organic Frameworks[J]. Chin. Chem. Lett., 2014,25:823-828. doi: 10.1016/j.cclet.2014.04.032

    8. [8]

      Liu T, Yu Y H, Zhang H Z, Jiang W H, Gao J S, Hou G F. Syntheses and Structures of Four Pairs of Coordination Polymers Based on 2, 2'-((5-(Methoxycarbonyl)-1, 3-phenylene)bis(oxy))dipropanoic Acid[J]. Cryst. Growth Des., 2017,17(4):1788-1795. doi: 10.1021/acs.cgd.6b01763

    9. [9]

      Zhuo C, Wen Y H, Hu S M, Sheng T L, Fu R B, Xue Z Z, Zhang H, Li H R, Yuan J G, Chen X, Wu X T. Homochiral Metal-Organic Frameworks with Tunable Nanoscale Channel Array and Their Enantioseparation Performance against Chiral Diols[J]. Inorg. Chem., 2017,56(11):6275-6280. doi: 10.1021/acs.inorgchem.7b00352

    10. [10]

      Zhang J Y, Chen J X, Peng S, Peng S Y, Zhang Z Z, Tong Y X, Miller P W, Yan X P. Emerging Porous Materials in Confined Spaces: From Chromatographic Applications to Flow Chemistry[J]. Chem. Soc. Rev., 2019,48(9):2566-2595. doi: 10.1039/C8CS00657A

    11. [11]

      ZHANG Q, ZHANG G W, CHENG J Y, LU W X, WANG P. Synthesis, Crystal Structure and Fluorescence Emission Properties of Cd(Ⅱ) and Pb(Ⅱ) MOFs Based on Hydroxyethoxy Isophthalate Acid[J]. Chinese J. Inorg. Chem., 2020,36(11):2063-2070. doi: 10.11862/CJIC.2020.247

    12. [12]

      Cui Z, Zhou L, Qin B W, Zhou B L, Zhang X Y, Li W L, Zhang J P. Selective Chiral Symmetry Breaking and Luminescence Sensing of a Zn(Ⅱ) Metal-Organic Framework[J]. Dalton Trans., 2018,47(24):7934-7940. doi: 10.1039/C8DT00939B

    13. [13]

      ZHAO T, ZHU H X, DONG M, ZHAO Y. Framework Isomerism in Chromium -Benzenedicarboxylate MOF: MIL-88B(Cr) and MIL-101 (Cr)[J]. Chinese J. Inorg. Chem., 2021,37(1):103-109.  

    14. [14]

      Li J R, Sculley J, Zhou H C. Metal-Organic Frameworks for Separations[J]. Chem. Rev., 2012,112(2):869-932. doi: 10.1021/cr200190s

    15. [15]

      Li R, Zhang W, Zhou K. Metal-Organic-Framework-Based Catalysts for Photoreduction of CO2[J]. Adv. Mater., 2018,301705512. doi: 10.1002/adma.201705512

    16. [16]

      Kang X M, Fan X Y, Hao P Y, Wang W M, Zhao B. A Stable Zinc-Organic Framework with Luminescence Detection of Acetylacetone in Aqueous Solution[J]. Inorg. Chem. Front., 2019,6(1):271-277. doi: 10.1039/C8QI01260A

    17. [17]

      Jia Q Q, Tong L, Wang M, Wang G X, Chen L Z. Synthesis, Characterization and Properties of Four Complexes Based on Semi-rigid Bisbenzimidazole and Aromatic Carboxylic Acid[J]. Inorg. Chem. Comm., 2021,128108569. doi: 10.1016/j.inoche.2021.108569

    18. [18]

      Zhang J P, Zhang Y B, Lin J B, Chen X M. Metal Azolate Frameworks: From Crystal Engineering to Functional Materials[J]. Chem. Rev., 2012,112(2):1001-1033. doi: 10.1021/cr200139g

    19. [19]

      Sun J Y, Liu L, Cheng F F, Hu M, Qin W, Huang R Y, Wu G H. A Homochiral Lead(Ⅱ) Double-Stranded Helical Coordination Network as Luminescent Sensor for Iron(Ⅲ)[J]. J. Solid State Chem., 2019,277:769-772. doi: 10.1016/j.jssc.2019.05.049

    20. [20]

      Shi J X, Tan J Y, Cui P H, Zhang N, Zhang C, Zhang J Y. N-Donor Ligand Driven Cdii-Based Coordination Polymers: Synthesis, Structures and Highly Selective Luminescence Sensing for Fe3+ Ions[J]. Inorg. Chim. Acta, 2019,489:54-60. doi: 10.1016/j.ica.2019.01.031

    21. [21]

      Lu Y L, Zhao W J, Feng X, Chai Y, Wu Z, Yang X W. Topological Structures and Properties of Two New Coordination Polymers Constructed from Biphenyl-3, 4', 5-tricarboxylic Acid[J]. J. Coord. Chem., 2013,66(3):473-480. doi: 10.1080/00958972.2012.761695

    22. [22]

      Zhang J, Huo L Q, Wang X Q, Fang K G, Fan L M, Hu T P. Structural Diversity, Magnetic Properties, and Luminescent Sensing of the Flexible Tripodal Ligand of 1, 3, 5-Tris(4-carbonylphenyloxy)benzene Based Mn(Ⅱ)/Cd(Ⅱ) Coordination Polymers[J]. Cryst. Growth Des., 2017,17(11):5887-5897. doi: 10.1021/acs.cgd.7b00986

    23. [23]

      LI Y L, ZHAO Y, SUN W Y. Two Zn(Ⅱ) and Cd(Ⅱ) Metal-Organic Frameworks with Mixed Ligands: Synthesis, Structure, Sorption and Luminescent Properties[J]. Chinese J. Inorg. Chem., 2020,36(6):1176-1184.  

    24. [24]

      Heloisa R, Ricardo A F M, Cintia M. Direct Contact Membrane Distillation for Textile Wastewater Treatment: A State of the Art Review[J]. Water Sci. Technol., 2017,76:2565-2579. doi: 10.2166/wst.2017.449

    25. [25]

      Kaur P, Kushwaha J P, Sangal V K. Transformation Products and Degradation Pathway of Textile Industry Wastewater Pollutants in Electro-Fenton Process[J]. Chemosphere, 2018,207:690-698. doi: 10.1016/j.chemosphere.2018.05.114

    26. [26]

      Zhang C L, Ma R H, We Q, Yang M R, Cao R, Zong X N. Photocatalytic Degradation of Organic Pollutants in Wastewater by Heteropolyacids: A Review[J]. J. Coord. Chem., 2021,74:1751-1764. doi: 10.1080/00958972.2021.1940982

    27. [27]

      Wang X L, Sha X T, Liu G C, Chen N L, Tian Y. Polycarboxylate-Directed Various Co(Ⅱ) Complexes Based on a "V"-like Bis-pyridyl-Bis-amide Derivative: Construction, Electrochemical and Photocatalytic Properties[J]. CrystEngComm, 2015,17(38):7290-7299.

    28. [28]

      WANG L B, WANG J J, YUE E L, TANG L, WANG X, HOU X Y, ZHANG Y Q. Synthesis, Structure, Magnetic and Photocatalytic Properties of Nickel(Ⅱ) Coordination Polymer Based on 1-(3, 5-Dicar-boxybenzyl)-1H-pyrazole -3, 5-dicarboxylic Acid Ligand[J]. Chinese J. Inorg. Chem., 2021,37(4):744-750. doi: 10.11862/CJIC.2021.089

    29. [29]

      Hussain N, Bhardwaj V K. The Influence of Different Coordination Environments on One-Dimensional Cu(Ⅱ) Coordination Polymers for the Photo-Degradation of Organic Dyes[J]. Dalton Trans., 2016,45(18):7697-7707. doi: 10.1039/C6DT00612D

    30. [30]

      Xu Z X, Ma Y L. Helical Coordination Polymer with a 3-Fold Interpenetration Structure Based on 5-(Hydroxymethyl)isophthalic Acid[J]. Chin. J. Struct. Chem., 2017,36(7):1193-1198.

    31. [31]

      Sheldrick G M. SHELXT-Integrated space-group and crystalstruc-ture determination[J]. Acta Crystallogr. Sect. A, 2015,A71:3-8.

    32. [32]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K. Puschmann H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Cryst., 2009,42:339-341. doi: 10.1107/S0021889808042726

    33. [33]

      Sheldrick G M. Crystal Structure Refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    3. [3]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    4. [4]

      Xiaoru LIUJinlian SHIYajia ZHENGShuangcun MOZhongxuan XU . Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 797-808. doi: 10.11862/CJIC.20240328

    5. [5]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    6. [6]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    7. [7]

      Chao Ma Peng Guo Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235

    8. [8]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    9. [9]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    10. [10]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    11. [11]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    12. [12]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    13. [13]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    14. [14]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    15. [15]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    16. [16]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    17. [17]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    18. [18]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    19. [19]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    20. [20]

      Chunmao YuanYanrong ZengLei HuangYu MouJun JinPing YiYanmei LiXiaojiang Hao . Hymoins A–C, three unusual polycyclic polyprenylated acylphloroglucinols with lipid-lowering activity from Hypericum monogynum. Chinese Chemical Letters, 2025, 36(3): 109859-. doi: 10.1016/j.cclet.2024.109859

Metrics
  • PDF Downloads(7)
  • Abstract views(564)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return