Citation: Alamgir, Yan-Long ZHAO, Talha Khalid, Ya-Bo XIE, Lu WANG, Lin-Hua XIE, Xin ZHANG, Jian-Rong LI. An Interpenetrated Anionic In(Ⅲ) Metal-Organic Framework for Selective Sensing of Fe3+ in Water[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(9): 1817-1824. doi: 10.11862/CJIC.2022.174 shu

An Interpenetrated Anionic In(Ⅲ) Metal-Organic Framework for Selective Sensing of Fe3+ in Water

  • Corresponding author: Xin ZHANG, zhang.xin@bjut.edu.cn
  • Received Date: 9 January 2022
    Revised Date: 19 May 2022

Figures(6)

  • As an emerging type of porous material, metal-organic frameworks (MOFs) have been developed as sensors for monitoring environmental pollutants in water. It is of high significance to develop fluorescent MOFs with simple precursors for selective detection of toxic Fe3+ ions. In this work, we present a water-stable two-fold interpenetrated indium-based metal-organic framework (NH2Me2)[In(fdc)2]·2H2O named BUT-205 (BUT stands for Beijing University of Technology, H2fdc=furan -2, 5-dicarboxylic acid) constructed from a biomass-derived ligand. BUT-205 has been structurally characterized by single-crystal X-ray diffraction. BUT-205 was an efficient sensor for Fe3+ ions in water with high sensitivity and selectivity. The limit of detection (LOD) was calculated to be 1.3 μmol·L-1 being lower than the US-EPA (U. S. Environmental Protection Agency) standard (15.7 μmol·L-1) in drinking water. Furthermore, BUT-205 could be recycled and used for at least four cycles.
  • 加载中
    1. [1]

      Mitchell E, Frisbie S, Sarkar B. Exposure to Multiple Metals from Groundwater—A Global Crisis: Geology, Climate Change, Health Effects, Testing, and Mitigation[J]. Metallomics, 2011,3:874-908. doi: 10.1039/c1mt00052g

    2. [2]

      Xiang Z H, Fang C Q, Leng S H, Cao D P. An Amino Group Functionalized Metal-Organic Framework as a Luminescent Probe for Highly Selective Sensing of Fe3+ Ions[J]. J. Mater. Chem. A, 2014,2:7662-7665. doi: 10.1039/c4ta00313f

    3. [3]

      Chen C H, Wang X S, Li L, Huang Y B, Cao R. Highly Selective Sensing of Fe3+ by an Anionic Metal-Organic Framework Containing Uncoordinated Nitrogen and Carboxylate Oxygen Sites[J]. Dalton Trans., 2018,47:3452-3458. doi: 10.1039/C8DT00088C

    4. [4]

      Rasheed T, Nabeel F. Luminescent Metal-Organic Frameworks as Potential Sensory Materials for Various Environmental Toxic Agents[J]. Coord. Chem. Rev., 2019,401213065. doi: 10.1016/j.ccr.2019.213065

    5. [5]

      Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Metal-Organic Framework Materials as Chemical Sensors[J]. Chem. Rev., 2012,112:1105-1125. doi: 10.1021/cr200324t

    6. [6]

      He Y B, Zhou W, Qian G D, Chen B L. Methane Storage in Metal-Organic Frameworks[J]. Chem. Soc. Rev., 2014,43:5657-5678. doi: 10.1039/C4CS00032C

    7. [7]

      Li J R, Kuppler R J, Zhou H C. Selective Gas Adsorption and Separation in Metal-Organic Frameworks[J]. Chem. Soc. Rev., 2009,38:1477-1504. doi: 10.1039/b802426j

    8. [8]

      Xu T T, Jiang Z Z, Liu P X, Chen H N, Lan X S, Chen D L, Li L B, He Y B. Immobilization of Oxygen Atoms in the Pores of Microporous Metal-Organic Frameworks for C2H2 Separation and Purification[J]. ACS Appl. Nano Mater., 2020,3:2911-2919. doi: 10.1021/acsanm.0c00162

    9. [9]

      Li J H, Xie Y, Zhou M Y, Lin R B, Chen X M. Microporous Zinc Formate for Efficient Separation of Acetylene over Carbon Dioxide[J]. Chem. Res. Chin. Univ., 2022,38:87-91. doi: 10.1007/s40242-021-1380-3

    10. [10]

      LI J, HAN S, CHEN T J, GOU Z X, ZHANG Q, NIE X S, CAO H R. Two Homologous Metal-Organic Frameworks Based on Zn2+ and Cd2+ : Luminescent Sensors for Nitro Aromatic Compounds in Solution and Vapor Medium[J]. Chinese J. Inorg. Chem., 2020,35(10):1843-1852.  

    11. [11]

      LIU Z Q, CAO S H, ZHANG Z, WU J F, ZHAO Y, SUN W Y. Metal-Organic Frameworks with 2, 6-Di(1H-imidazol-1-yl)naphthalene and Dicarboxylate Ligands: Synthesis, Crystal Structure and Photoluminescence Sensing Property[J]. Chinese J. Inorg. Chem., 2019,35(11):2145-2151. doi: 10.11862/CJIC.2019.225

    12. [12]

      Horcajada P, Serre C, Vallet-Regi M, Sebban M, Taulelle F, Ferey G. Metal-Organic Frameworks as Efficient Materials for Drug Delivery[J]. Angew. Chem. Int. Ed., 2006,45:5974-5978. doi: 10.1002/anie.200601878

    13. [13]

      Chen Y J, Li P, Modica J A, Drout R J, Farha O K. Acid-Resistant Mesoporous Metal-Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release[J]. J. Am. Chem. Soc., 2018,140:5678-5681. doi: 10.1021/jacs.8b02089

    14. [14]

      Maity R, Chakraborty D, Nandi S, Yadav A K, Mullangi D, Vinod C P, Vaidhyanathan R. Aqueous-Phase Differentiation and Speciation of Fe3+ and Fe2+ Using Water-Stable Photoluminescent Lanthanide-Based Metal-Organic Framework[J]. ACS Appl. Nano Mater., 2019,2:5169-5178. doi: 10.1021/acsanm.9b01047

    15. [15]

      ZHANG C L. Two Cd(Ⅱ)-Based Metal-Organic Frameworks for Luminescence Sensing of Metal Ions and Organic Molecules[J]. Chinese J. Inorg. Chem., 2019,35(1):165-173. doi: 10.11862/CJIC.2019.021

    16. [16]

      Talha K, Alamgir , Ahmed N, Xie L H, Zhang X, Li J R. Construction of a Zeolite A-Type Multivariate Metal-Organic Framework for Selective Sensing of Fe3+ and Cr2O72-[J]. CrystEngComm, 2021,23:4923-4929. doi: 10.1039/D1CE00610J

    17. [17]

      Jin M, Wei L H, Yang Y T, Run M T, Yin C X. A New Turn-On Fluorescent Probe for the Detection of Palladium(0) and Its Application in Living Cells and Zebrafish[J]. New J. Chem., 2019,43:548-551. doi: 10.1039/C8NJ04438D

    18. [18]

      Li E Z, Kang J, Ye P Y, Zhang W J, Cheng F Q, Yin C X. A Prospective Material for the Highly Selective Extraction of Lithium Ions Based on a Photochromic Crowned Spirobenzopyran[J]. J. Mater. Chem. B, 2019,7:903-907. doi: 10.1039/C8TB02906G

    19. [19]

      Wu Y C, Yin C X, Zhang W J, Chao J B, Huo F J. A Red -Emitting Fluorescent Probe Imaging Release of Calcium Ions from Lysosome Induced by Chloroquine Based on a Photochromic Crowned Spirobenzopyran[J]. Dyes Pigment., 2021,193109467. doi: 10.1016/j.dyepig.2021.109467

    20. [20]

      Wang B, Wang P L, Xie L H, Lin R B, Lv J, Li J R, Chen B. A Stable Zirconium Based Metal-Organic Framework for Specific Recognition of Representative Polychlorinated Dibenzo-p-Dioxin Molecules[J]. Nat. Commun., 2019,103861. doi: 10.1038/s41467-019-11912-4

    21. [21]

      Singh D, Nagaraja C M. A Luminescent 3D Interpenetrating Metal-Organic Framework for Highly Selective Sensing of Nitrobenzene[J]. Dalton Trans., 2014,43:17912-17915. doi: 10.1039/C4DT02841D

    22. [22]

      Yuan R R, He H M. State of the Art Methods and Challenges of Luminescent Metal-Organic Frameworks for Antibiotic Detection[J]. Inorg. Chem. Front., 2020,7:4293-4319. doi: 10.1039/D0QI00955E

    23. [23]

      Wang B, Lv X L, Feng D, Xie L H, Zhang J, Li M, Xie Y, Li J R, Zhou H C. Highly Stable Zr(Ⅳ)-Based Metal-Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water[J]. J. Am. Chem. Soc., 2016,138:6204-6216. doi: 10.1021/jacs.6b01663

    24. [24]

      Hu Z C, Deibert B J, Li J. Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection[J]. Chem. Soc. Rev., 2014,43:5815-5840. doi: 10.1039/C4CS00010B

    25. [25]

      Cui Y, Yue Y, Qian G D, Chen B L. Luminescent Functional Metal-Organic Frameworks[J]. Chem. Rev., 2012,112:1126-1162. doi: 10.1021/cr200101d

    26. [26]

      Wang C H, Liu X L, Demir N K, Chen J P, Li K. Applications of Water Stable Metal-Organic Frameworks[J]. Chem. Soc. Rev., 2016,45:5107-5134. doi: 10.1039/C6CS00362A

    27. [27]

      Zhang X, Wang B, Alsalme A, Xiang S C, Zhang Z J, Chen B L. Design and Applications of Water-Stable Metal-Organic Frameworks: Status and Challenges[J]. Coord. Chem. Rev., 2020,423213507. doi: 10.1016/j.ccr.2020.213507

    28. [28]

      Devic T, Serre C. High Valence 3p and Transition Metal Based MOFs[J]. Chem. Soc. Rev., 2014,43:6097-6115. doi: 10.1039/C4CS00081A

    29. [29]

      Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability[J]. J. Am. Chem. Soc., 2008,130:13850-13851. doi: 10.1021/ja8057953

    30. [30]

      Lv X L, Yuan S, Xie L H, Darke H F, Chen Y, He T, Dong C, Wang B, Zhang Y Z, Li J R, Zhou H C. Ligand Rigidification for Enhancing the Stability of Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2019,141:10283-10293. doi: 10.1021/jacs.9b02947

    31. [31]

      Bu F, Lin Q P, Zhai Q G, Bu X H, Feng P Y. Charge-Tunable Indium-Organic Frameworks Built from Cationic, Anionic, and Neutral Building Blocks[J]. Dalton Trans., 2015,44:16671-16674. doi: 10.1039/C5DT02861B

    32. [32]

      Kumar Maka V, Tamuly P, Jindal S, Narasimha Moorthy J. Control of In-MOF Topologies and Tuning of Porosity through Ligand Structure, Functionality and Interpenetration: Selective Cationic Dye Exchange[J]. Appl. Mater. Today, 2020,19100613. doi: 10.1016/j.apmt.2020.100613

    33. [33]

      Yang H, Guo F, Lama P, Gao W Y, Wu H, Barbour L J, Zhou W, Zhang J, Aguila B, Ma S. Visualizing Structural Transformation and Guest Binding in a Flexible Metal-Organic Framework under High Pressure and Room Temperature[J]. ACS Central Sci., 2018,4:1194-1200. doi: 10.1021/acscentsci.8b00378

    34. [34]

      Yang Q Y, Lama P, Sen S, Lusi M, Chen K J, Gao W Y, Shivanna M, Pham T, Hosono N, Kusaka S, Perry J J, Ma S Q, Space B, Barbour L J, Kitagawa S, Zaworotko M J. Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network that Exhibits Gate-Opening at Methane Storage Pressures[J]. Angew. Chem. Int. Ed., 2018,57:5684-5689. doi: 10.1002/anie.201800820

    35. [35]

      Park I H, Mulijanto C E, Lee H H, Kang Y, Lee E, Chanthapally A, Lee S S, Vittal J J. Influence of Interpenetration in Diamondoid Metal-Organic Frameworks on the Photoreactivity and Sensing Properties[J]. Cryst. Growth Des., 2016,16:2504-2508. doi: 10.1021/acs.cgd.6b00354

    36. [36]

      Swaidan A, Borthakur P, Boruah P K, Das M R, Barras A, Hamieh S, Toufaily J, Hamieh T, Szunerits S, Boukherroub R. A Facile Preparation of CuS-BSA Nanocomposite as Enzyme Mimics: Application for Selective and Sensitive Sensing of Cr(Ⅵ) Ions[J]. Sens. Actuator B-Chem., 2019,294:253-262. doi: 10.1016/j.snb.2019.05.052

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    3. [3]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    4. [4]

      Xin Chen Meng Zhao Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445

    5. [5]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    6. [6]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    7. [7]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    8. [8]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    9. [9]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    10. [10]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    11. [11]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    12. [12]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    13. [13]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    14. [14]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    15. [15]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    16. [16]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    17. [17]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    18. [18]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    19. [19]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    20. [20]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

Metrics
  • PDF Downloads(11)
  • Abstract views(711)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return