Citation: Ren-Zheng JIANG, Jun-Hua CHANG, Ying GAO, Jin-Feng ZHANG, Meng-Jiang LI, Ying-Peng XIE. Surface Sulfuration and Phosphorization Boosting Hydrogen Evolution Performance of Nickel Molybdate[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(9): 1729-1738. doi: 10.11862/CJIC.2022.172 shu

Surface Sulfuration and Phosphorization Boosting Hydrogen Evolution Performance of Nickel Molybdate

  • Corresponding author: Ying-Peng XIE, ypxie@syuct.edu.cn
  • Received Date: 21 March 2022
    Revised Date: 26 June 2022

Figures(8)

  • Herein, the nickel molybdate nanorods arrays supported on Ni foam (NMO/NF) precursor were firstly fabricated by hydrothermal method. Then the surface sulfidation and phosphating for NMO/NF were conducted in turn, to obtain a three-dimensional self-supported electrode (PS-NMO/NF). The sulfidation induces the formation of amorphous sulfides with significantly enhanced electrochemical active area on the surface of nickel molybdate (S- NMO/ NF), as well as a coral-like sphere structure. Phosphates were induced on the surface of sulfides by subsequent phosphating. The formed sulfides/phosphates heterogeneous interfaces can promote the electron transfer and improve the hydrogen evolution reaction (HER) performance of NMO. In 1 mol·L-1 KOH electrolyte, when the current density was 10 and 100 mA·cm-2, the corresponding HER overpotential of PS-NMO/NF was 93 and 180 mV, respectively. The Tafel slope of PS-NMO/NF was 67 mV·dec-1, and it had good stability within 20 h of running.
  • 加载中
    1. [1]

      Braff W A, Mueller J M, Trancik J E. Value of Storage Technologies for Wind and Solar Energy[J]. Nat. Clim. Chang., 2016,6(10):964-969. doi: 10.1038/nclimate3045

    2. [2]

      Dincer I. Green Methods for Hydrogen Production[J]. Int. J. Hydrog. Energy, 2012,37(2):1954-1971. doi: 10.1016/j.ijhydene.2011.03.173

    3. [3]

      Nikolaidis P, Poullikkas A. A Comparative Overview of Hydrogen Production Processes[J]. Renew. Sust. Energ. Rev., 2017,67:597-611. doi: 10.1016/j.rser.2016.09.044

    4. [4]

      Zhang D D, Soo J Z, Tan H H, Jagadish C, Catchpole K, Karuturi S K. Earth-Abundant Amorphous Electrocatalysts for Electrochemical Hydrogen Production: A Review[J]. Adv. Energy Sustainability Res., 2021,2(3)2000071. doi: 10.1002/aesr.202000071

    5. [5]

      Hu C L, Zhang L, Gong J L. Recent Progress Made in the Mechanism Comprehension and Design of Electrocatalysts for Alkaline Water Splitting[J]. Energy Environ. Sci., 2019,12:2620-2645. doi: 10.1039/C9EE01202H

    6. [6]

      Xiao P, Chen W, Wang X. A Review of Phosphide - Based Materials for Electrocatalytic Hydrogen Evolution[J]. Adv. Energy Mater., 2015,5(24)1500985. doi: 10.1002/aenm.201500985

    7. [7]

      WANG Z M, LU Y N, TANG M, ZHANG S, WANG Y C, ZHANG Z B, LIU Y H, LIU Y H. Preparation by Molten Salt Method of Cu/MoS2 for Enhancement of Hydrogen Evolution Reaction Performance under Alkaline Condition[J]. Chinese J. Inorg. Chem., 2021,37(9):1589-1596.  

    8. [8]

      Luo X, Ji P X, Wang P Y, Cheng R L, Chen D, Lin C, Zhang J A, He J W, Shi Z H, Li N, Xiao S Q, Mu S C. Interface Engineering of Hierarchical Branched Mo-Doped Ni3 S 2/NixPy Hollow Heterostructure Nanorods for Efficient Overall Water Splitting[J]. Adv. Energy Mater., 2020,10(17)1903891. doi: 10.1002/aenm.201903891

    9. [9]

      Yang Y Q, Zhang K, Lin H, Li X, Chan H C, Yang L C, Gao Q S. MoS2-Ni3S2 Heteronanorods as Efficient and Stable Bifunctional Electrocata-lysts for Overall Water Splitting[J]. ACS Catal., 2017,7(4):2357-2366. doi: 10.1021/acscatal.6b03192

    10. [10]

      Chen Z J, Zhong H F, Hu W J, Yin H, Cao G X, Wen H, Wang J J, Wang P. Highly Dispersed Ni2-xMoxP Nanoparticles on Oxygen - Defect - Rich NiMoO4-y Nanosheets as an Active Electrocatalyst for Alkaline Hydrogen Evolution Reaction[J]. J. Power Sources, 2019,444227311. doi: 10.1016/j.jpowsour.2019.227311

    11. [11]

      Du C C, Shang M X, Mao J X, Song W B. Hierarchical MoP/Ni2P Heterostructures on Nickel Foam for Efficient Water Splitting[J]. J. Mater. Chem. A, 2017,515940. doi: 10.1039/C7TA03669H

    12. [12]

      Li Y J, Zhang H C, Jiang M, Kuang Y, Wang H, Sun X M. Amorphous Co-Mo-S Ultrathin Films with Low-Temperature Sulfurization as High - Performance Electrocatalysts for the Hydrogen Evolution Reaction[J]. J. Mater. Chem. A, 2016,4:13731-13735. doi: 10.1039/C6TA05742J

    13. [13]

      Jiang R Z, Zhao D Q, Fan H N, Xie Y P, Li M J, Lin H, Wu Z S. Phosphorus Doping and Phosphates Coating for Nickel Molybdate/ Nickel Molybdate Hydrate Enabling Efficient Overall Water Splitting[J]. J. Colloid Interface Sci., 2022,606:384-392. doi: 10.1016/j.jcis.2021.08.035

    14. [14]

      Ghosh D, Giria S, Das C K. Synthesis, Characterization and Electrochemical Performance of Graphene Decorated with 1D NiMoO4· nH2O Nanorods[J]. Nanoscale, 2013,5(21):10428-10437. doi: 10.1039/c3nr02444j

    15. [15]

      Liu X, Meng J S, Ni K, Guo R T, Xia F J, Xie J J, Li X, Wen B, Wu P J, Li M, Wu J S, Wu X J, Mai L Q, Zhao D Y. Complete Reconstruction of Hydrate Pre-catalysts for Ultrastable Water Electrolysis in Industrial-Concentration Alkali Media[J]. Cell Rep. Phys. Sci., 2020,1100241. doi: 10.1016/j.xcrp.2020.100241

    16. [16]

      Li D J, Kang J, Lee H J, Choi D S, Koo S H, Han B, Kim S O. High Activity Hydrogen Evolution Catalysis by Uniquely Designed Amorphous/Metal Interface of Core-Shell Phosphosulfide/N-Doped CNTs[J]. Adv. Energy Mater., 2018,8(13)1702806. doi: 10.1002/aenm.201702806

    17. [17]

      Zhang W Z Z, Ding L C, Sun W P, Sheng T, Wu Z C, Gao F. Ultrasmall Pt Nanoparticles - Loaded Crystalline MoO2/Amorphous Ni(OH)2 Hybrid Nanofilms with Enhanced Water Dissociation and Sufficient Hydrogen Spillover for Hydrogen Generation[J]. ACS Sustain. Chem. Eng., 2021,9:8257-8269. doi: 10.1021/acssuschemeng.1c02421

    18. [18]

      You B, Tang M T, Tsai C, Abild - Pedersen F, Zheng X L, Li H. Enhancing Electrocatalytic Water Splitting by Strain Engineering[J]. Adv. Mater., 2019,31(17)1807001. doi: 10.1002/adma.201807001

    19. [19]

      Kwon J, Han H, Jo S, Choi S, Chung K Y, Ali G, Park K, Paik U, Song T. Amorphous Nickel - Iron Borophosphate for a Robust and Efficient Oxygen Evolution Reaction[J]. Adv. Energy Mater., 2021,11(25)2100624. doi: 10.1002/aenm.202100624

    20. [20]

      Lu X F, Zhang S L, Sim W L, Gao S Y, Lou X W. Phosphorized CoNi2S4 Yolk - Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis[J]. Angew. Chem. Int. Ed., 2021,60(42):22885-22891. doi: 10.1002/anie.202108563

    21. [21]

      Xu Q C, Liu Y, Jiang H, Hu Y, Liu H L, Li C Z. Unsaturated Sulfur Edge Engineering of Strongly Coupled MoS2 Nanosheet-Carbon Macroporous Hybrid Catalyst for Enhanced Hydrogen Generation[J]. Adv. Energy Mater., 2019,9(2)1802553. doi: 10.1002/aenm.201802553

    22. [22]

      Sarma P V, Vineesh T V, Kumar R, Sreepal V, Prasannachandran R, Singh A K, Shaijumon M M. Nanostructured Tungsten Oxysulfide as an Efficient Electrocatalyst for Hydrogen Evolution Reaction[J]. ACS Catal., 2020,10(12):6753-6762. doi: 10.1021/acscatal.9b04177

    23. [23]

      Duan Y, Yu Z Y, Hu S J, Zheng X S, Zhang C T, Ding H H, Hu B C, Fu Q Q, Yu Z L, Zheng X, Zhu J F, Gao M R, Yu S H. Scale - Up Synthesis of Amorphous NiFeMo Oxides and Their Rapid Surface Reconstruction for Superior Oxygen Evolution Catalysis[J]. Angew. Chem. Int. Ed., 2019,58(44):15772-15777. doi: 10.1002/anie.201909939

    24. [24]

      Xiao Z, Wang Y, Huang Y C, Wei Z, Dong C L, Ma J, Shen S, Li Y, Wang S. Filling the Oxygen Vacancies in Co3O4 with Phosphorus: An Ultra-Efficient Electrocatalyst for Overall Water Splitting[J]. Energy Environ. Sci., 2017,10:2563-2569. doi: 10.1039/C7EE01917C

    25. [25]

      Ai L H, Niu Z G, Jiang J. Mechanistic Insight into Oxygen Evolution Electrocatalysis of Surface Phosphate Modified Cobalt Phosphide Nanorod Bundles and Their Superior Performance for Overall Water Splitting[J]. Electrochim. Acta, 2017,242:355-363. doi: 10.1016/j.electacta.2017.05.032

    26. [26]

      Peng L S, Shen J J, Zheng X Q, Xiang R, Deng M M, Mao Z X, Feng Z P, Zhang L, Li L, Wei Z D. Rationally Design Of Monometallic NiO-Ni3 S2/NF Heteronanosheets as Bifunctional Electrocatalysts for Overall Water Splitting[J]. J. Catal., 2019,369:345-351. doi: 10.1016/j.jcat.2018.11.023

    27. [27]

      Gu H H, Fan W, Liu T X. Phosphorus Doped NiCo2S4 Nanocrystals Grown on Electrospun Carbon Nanofibers as Ultra-efficient Electrocatalysts for Hydrogen Evolution Reaction[J]. Nanoscale Horiz., 2017,2:277-283. doi: 10.1039/C7NH00066A

    28. [28]

      ZHOU Q, LI X B, LI Z Y. Composite Electrodes of Nano - Porous Ni-Mo Modified by RuO2 and Electrocatalytic Property for Hydrogen Evolution[J]. Chinese J. Inorg. Chem., 2020,36(9):1649-1658.  

    29. [29]

      Jin Y S, Yue X, Shu C, Huang S L, Shen P K. Three - Dimensional Porous MoNi4 Networks Constructed by Nanosheets as Bifunctional Electrocatalysts for Overall Water Splitting[J]. J. Mater. Chem. A, 2017,5:2508-2513. doi: 10.1039/C6TA10802D

    30. [30]

      Patil R B, House S D, Mantri A, Yang J C, Mc Kone J R. Direct Observation of Ni - Mo Bimetallic Catalyst Formation via Thermal Reduction of Nickel Molybdate Nanorods[J]. ACS Catal., 2020,10(18):10390-10398. doi: 10.1021/acscatal.0c02264

    31. [31]

      Gong M, Wang D Y, Chen C C, Hwang B J, Dai H. A Mini Review on Nickel - Based Electrocatalysts for Alkaline Hydrogen Evolution Reaction[J]. Nano Res., 2016,9:28-46. doi: 10.1007/s12274-015-0965-x

    32. [32]

      Kim H S, Cook J B, Lin H, Ko J S, Tolbert S H, Ozolins V, Dunn B. Oxygen Vacancies Enhance Pseudocapacitive Charge Storage Prop-erties of MoO3-x[J]. Nat. Mater., 2017,16:454-460. doi: 10.1038/nmat4810

    33. [33]

      Cobo S, Heidkamp J, Jacques P A, Fize J, Fourmond V, Guetaz L, Jousselme B, Ivanova V, Dau H, Palacin S, Fontecave M, Artero V. A Janus Cobalt - Based Catalytic Material for Electrosplitting of Water[J]. Nat. Mater., 2012,11(9):802-807. doi: 10.1038/nmat3385

    34. [34]

      Du F, Zhang Y T, He H C, Li T, Wen G H, Zhou Y, Zou Z G. Elec-trodeposited Amorphous Cobalt Phosphosulfide on Ni Foams for Highly Efficient Overall Water Splitting[J]. J. Power Sources, 2019,431:182-188. doi: 10.1016/j.jpowsour.2019.05.063

    35. [35]

      Ge Y C, Dong P, Craig S R, Ajayan P M, Ye M X, Shen J F. Trans-forming Nickel Hydroxide into 3D Prussian Blue Analogue Array to Obtain Ni2P/Fe 2P for Efficient Hydrogen Evolution Reaction[J]. Adv. Energy Mater., 2018,8(21)1800484. doi: 10.1002/aenm.201800484

    36. [36]

      Liu X L, Guo Y H, Wang P, Wu Q, Zhang Q Q, Rozhkova E A, Wang Z Y, Liu Y Y, Zheng Z K, Dai Y, Huang B B. Synthesis of Syn-ergistic Nitrogen-Doped NiMoO 4/Ni3N Heterostructure for Implemen-tation of an Efficient Alkaline Electrocatalytic Hydrogen Evolution Reaction[J]. ACS Appl. Energy Mater., 2020,3(3):2440-2449. doi: 10.1021/acsaem.9b02130

    37. [37]

      Jiang Y, Huang J B, Mao B G, An T Y, Wang J, Cao M H. Inside Solid-Liquid Interfaces: Understanding the Influence of the Electri-cal Double Layer on Alkaline Hydrogen Evolution Reaction[J]. Appl. Catal. B-Environ., 2021,293120220. doi: 10.1016/j.apcatb.2021.120220

    38. [38]

      Wang H Y, Hung S F, Chen H Y, Chan T S, Chen H M, Liu B. In Operando Identification of Geometrical - Site - Dependent Water Oxi-dation Activity of Spinel Co3O4[J]. J. Am. Chem. Soc., 2016,138(1):36-39. doi: 10.1021/jacs.5b10525

    39. [39]

      ZHOU Q, LI X B, JIAO S Z. Mesoporous Regulated Co9S 8/Ni3S2 Composite Electrode Materials and Electrocatalytic Hydrogen Evolu-tion Performance[J]. Chinese J. Inorg. Chem., 2021,37(11):1970-1980.  

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    10. [10]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    11. [11]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    17. [17]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(20)
  • Abstract views(1800)
  • HTML views(400)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return