A Complex of Silver(Ⅰ) with N⁃O Chelating Agent and Phosphine Ligand: Design, Structures, and Biological Activity
- Corresponding author: Ren‐Shu WANG, wangrenshu@126.com
Citation:
Ren‐Shu WANG, Jing FENG, Yuan‐Lan WANG, Chen‐Feng OUYANG. A Complex of Silver(Ⅰ) with N⁃O Chelating Agent and Phosphine Ligand: Design, Structures, and Biological Activity[J]. Chinese Journal of Inorganic Chemistry,
;2022, 38(8): 1609-1622.
doi:
10.11862/CJIC.2022.167
Medici S, Peana M, Crisponi G, Nurchi V M, Lachowicz J I, Remelli M, Zoroddu M A. Silver Coordination Compounds: A New Horizon in Medicine[J]. Coord. Chem. Rev., 2016,327-328:349-359. doi: 10.1016/j.ccr.2016.05.015
Fox C L Jr. Silver Sulfadiazine—A New Topical Therapy for Pseudomonas in Burns: Therapy of Pseudomonas Infection in Burns[J]. Arch. Surg., 1968,96(2):184-188. doi: 10.1001/archsurg.1968.01330200022004
Kuchar J, Rust J, Lehmann C W, Mohr F. Silver(Ⅰ) Complexes with Camphorsulfonato and Phosphine Ligands: Structural Diversity and Antibacterial Activity[J]. Inorg. Chem., 2020,59(15):10557-10568. doi: 10.1021/acs.inorgchem.0c00982
Kascatan‐Nebioglu A, Panzner M J, Tessier C A, Cannon C L, Youngs W J. N‐Heterocyclic Carbene‐Silver Complexes: A New Class of Antibiotics[J]. Coord. Chem. Rev., 2007,251(5):884-895.
Wakshlak R B K, Pedahzur R, Avnir D. Antibacterial Activity of Silver ‐ Killed Bacteria: The"Zombies"Effect[J]. Sci. Rep., 2015,5(1)9555. doi: 10.1038/srep09555
Mariam J, Sivakami S, Kothari D C, Dongre P M. Bioactivity of Albumins Bound to Silver Nanoparticles[J]. Protein J., 2014,33(3):258-266. doi: 10.1007/s10930-014-9553-2
Zhang S K, Du C, Wang Z Z, Han X G, Zhang K, Liu L H. Reduced Cytotoxicity of Silver Ions to Mammalian Cells at High Concentration Due to the Formation of Silver Chloride[J]. Toxicol. In Vitro, 2013,27(2):739-744. doi: 10.1016/j.tiv.2012.12.003
Mihorianu M, Franz M H, Jones P G, Freytag M, Kelter G, Fiebig H H, Tamm M, Neda I. N‐Heterocyclic Carbenes Derived from Imidazo‐[1, 5‐a]pyridines Related to Natural Products: Synthesis, Structure and Potential Biological Activity of Some Corresponding Gold and Silver Complexes[J]. Appl. Organomet. Chem., 2016,30(7):581-589.
Kavitha R, Nirmala S, Nithyabalaji R, Sribalan R. Biological Evaluation, Molecular Docking and DFT Studies of Charge Transfer Complexes of Quinaldic Acid with Heterocyclic Carboxylic Acid[J]. J. Mol. Struct., 2020,1204127508. doi: 10.1016/j.molstruc.2019.127508
Högberg A G S, Madan K, Moberg C, Sjöberg B, Weber M, Muhammed M. Selective Reagents for Solvent Extraction of Metals—Ⅰ. Quinaldic Acids[J]. Polyhedron, 1985,4(6):971-977. doi: 10.1016/S0277-5387(00)84066-8
Shaw M J, Hill S J, Jones P. Chelation Ion Chromatography of Metal Ions Using High Performance Substrates Dynamically Modified with Heterocyclic Carboxylic Acids[J]. Anal. Chim. Acta, 1999,401(1/2):65-71.
Li M H, Dong X H, Zhang N, Jérôme F, Gu Y L. Eco‐Efficient Synthesis of 2‐Quinaldic Acids from Furfural[J]. Green Chem., 2019,21(17):4650-4655. doi: 10.1039/C9GC02206F
Song F H. Quinaldic Acid as a New Matrix for Matrix‐Assisted Laser Desorption/Ionization of Nucleic Acids. Rapid Commun[J]. Mass Spectrom., 2003,17(15):1802-1807.
Badawy A B B. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects[J]. Int. J. Tryptophan Res., 2017,101178646917691938.
Foster A C, Vezzani A, French E D, Schwarcz R. Kynurenic Acid Blocks Neurotoxicity and Seizures Induced in Rats by the Related Brain Metabolite Quinolinic Acid[J]. Neurosci. Lett., 1984,48(3):273-278. doi: 10.1016/0304-3940(84)90050-8
Williams M, Zhang Z, Nance E, Drewes J L, Lesniak W G, Singh S, Chugani D C, Rangaramanujam K, Graham D R, Kannan S. Maternal Inflammation Results in Altered Tryptophan Metabolism in Rabbit Placenta and Fetal Brain[J]. Dev. Neurosci., 2017,39(5):399-412. doi: 10.1159/000471509
Fila M, Chojnacki J, Pawlowska E, Szczepanska J, Chojnacki C, Blasiak J. Kynurenine Pathway of Tryptophan Metabolism in Migraine and Functional Gastrointestinal Disorders[J]. Int. J. Mol. Sci., 2021,22(18)10134. doi: 10.3390/ijms221810134
Fu Q Y, Tan Z, Shi L G, Xun W J. Resveratrol Attenuates Diquat‐Induced Oxidative Stress by Regulating Gut Microbiota and Metabolome Characteristics in Piglets[J]. Front. Microbiol., 2021,12695155. doi: 10.3389/fmicb.2021.695155
Lee C H, Lee H S. Growth Inhibiting Activity of Quinaldic Acid Isolated from Ephedra Pachyclada against Intestinal Bacteria[J]. J. Korean Soc. Appl. Biol. Chem., 2009,52(4):331-335. doi: 10.3839/jksabc.2009.059
Sun X M, Savidge T, Feng H P. The Enterotoxicity of Clostridium Difficile Toxins[J]. Toxins, 2010,2(7):1848-1880. doi: 10.3390/toxins2071848
Silva R O S, Dorella F A, Figueiredo H C P, Costa É A, Pelicia V, Ribeiro B L D, Ribeiro M G, Paes A C, Megid J, Lobato F C F. Clostridium Perfringens and C. Difficile in Parvovirus‐Positive Dogs[J]. Anaerobe, 2017,48:66-69. doi: 10.1016/j.anaerobe.2017.07.001
Frederik S S, Mads F B, Endre S, Anders M B. Prevalence of Salmonella Species, Clostridium Perfringens, and Clostridium Difficile in the Feces of Healthy Elephants (Loxodonta Species and Elephas Maximus) In Europe[J]. J. Zoo Wildl. Med., 2021,51(4):752-760.
Langner E, Jeleniewicz W, Turski W A, Plech T. Quinaldic Acid Induces Changes in the Expression of P53 Tumor Suppressor Both on Protein and Gene Level in Colon Cancer LS180 Cells[J]. Pharmacol. Rep., 2019,71(2):189-193. doi: 10.1016/j.pharep.2018.10.016
Kelly W L, Pan L, Li C X. Thiostrepton Biosynthesis: Prototype for a New Family of Bacteriocins[J]. J. Am. Chem. Soc., 2009,131(12):4327-4334. doi: 10.1021/ja807890a
Nicolaou K C, Safina B S, Funke C, Zak M, Zécri F J. Stereocontrolled Synthesis of the Quinaldic Acid Macrocyclic System of Thiostrepton[J]. Angew. Chem. Int. Ed., 2002,41(11):1937-1940. doi: 10.1002/1521-3773(20020603)41:11<1937::AID-ANIE1937>3.0.CO;2-Y
Duan P P, Zheng Q F, Lin Z, Wang S F, Chen D D, Liu W. Molecular Engineering of Thiostrepton via Single"Base"‐Based Mutagenesis to Generate Side Ring‐Derived Variants[J]. Org. Chem. Front., 2016,3(10):1254-1258. doi: 10.1039/C6QO00320F
Zheng Q F, Wang S F, Duan P P, Liao R J, Chen D D, Liu W. An α/β‐Hydrolase Fold Protein in the Biosynthesis of Thiostrepton Exhibits a Dual Activity for Endopeptidyl Hydrolysis and Epoxide Ring Opening/Macrocyclization[J]. Proc. Natl. Acad. Sci. U. S. A., 2016,113(50):14318-14323. doi: 10.1073/pnas.1612607113
El‐bendary M M, Etaiw S E H. Structure and Applications of Organotin Complex Based on Trimethyltin Cation and Quinaldic Acid[J]. Appl. Organomet. Chem., 2018,32(3)e4152. doi: 10.1002/aoc.4152
Silva E N, Silva P A B, Graminha A E, Oliveira P F, Damasceno J L, Tavares D C, Batista A A, Von Poelhsitz G. Synthesis, Characterization, Cytotoxic Activity, and Interactions with CT ‐DNA and BSA of Cationic Ruthenium(Ⅱ) Complexes Containing Dppm and Quinoline Carboxylates[J]. Bioinorg. Chem. Appl., 2017,20172562780.
Im Y H, Kang E, Kim I H, Kim D E, Shin H K, Lee B J. Synthesis and OLED Properties of Zinc Complexes Based on Quinaldic Acid[J]. Mol. Cryst. Liq. Cryst., 2014,599(1):105-111. doi: 10.1080/15421406.2014.935971
Tanaka S, Suzuki Y, Saburi H, Kitamura M. Soft Ruthenium and Hard Brønsted Acid Combined Catalyst for Efficient Cleavage of Allyloxy Bonds[J]. Application to Protecting Group Chemistry. Tetrahedron, 2015,71(37):6559-6568.
Shankar K, Kirillov A M, Baruah J B. Bottom Up Synthesis for Homo‐and Heterometallic 2, 3‐Pyridinedicarboxylate Coordination Compounds[J]. Polyhedron, 2015,102:521-529. doi: 10.1016/j.poly.2015.10.031
İlkimen H, Yenikaya C, Gülbandılar A, Sarı M. Synthesis and Characterization of a Novel Proton Salt of 2‐Amino‐6‐nitrobenzothiazole with 2, 6‐Pyridinedicarboxylic Acid and Its Metal Complexes and Their Antimicrobial and Antifungal Activity Studies[J]. J. Mol. Struct., 2016,1120:25-33. doi: 10.1016/j.molstruc.2016.04.068
Banti C N, Papatriantafyllopoulou C, Manoli M, Tasiopoulos A J, Hadjikakou S K. Nimesulide Silver Metallodrugs, Containing the Mitochondriotropic, Triaryl Derivatives of Pnictogen; Anticancer Activity against Human Breast Cancer Cells[J]. Inorg. Chem., 2016,55(17):8681-8696. doi: 10.1021/acs.inorgchem.6b01241
Trost B M, Machacek M R, Tsui H C. Development of Aliphatic Alcohols as Nucleophiles for Palladium‐Catalyzed DYKAT Reactions: Total Synthesis of (+)‐Hippospongic Acid A[J]. J. Am. Chem. Soc., 2005,127(19):7014-7024. doi: 10.1021/ja050340q
Banti C N, Hatzidimitriou A G, Kourkoumelis N, Hadjikakou S K. Diclofenac Conjugates with Biocides through Silver(Ⅰ) Ions (CoMeD′s); Development of a Reliable Model for the Prediction of Anti‐proliferation of NSAID′s‐Silver Formulations[J]. J. Inorg. Biochem., 2019,194:7-18. doi: 10.1016/j.jinorgbio.2019.01.020
Richards V N, Rath N P, Buhro W E. Pathway from a Molecular Precursor to Silver Nanoparticles: The Prominent Role of Aggregative Growth[J]. Chem. Mater., 2010,22(11):3556-3567. doi: 10.1021/cm100871g
LI Z F, ZHANG Z W, CUI Y Z, LIU M, YANG Y P, JIN Q H. Syntheses, Characterizations and Crystal Structures of Two Kinds of Silver(Ⅰ) Complexes Derived from Thiol Ligand[J]. Chinese J. Inorg. Chem., 2016,32(1):139-144.
Umadevi M, Muthuraj V, Vanajothi R. Structural, Cytotoxicity and Molecular Docking Studies of Some Quinoline Schiff Bases and Their Pd(Ⅱ), Mn(Ⅱ) and Ru(Ⅱ) Complexes[J]. J. Mol. Struct., 2020,1221128778. doi: 10.1016/j.molstruc.2020.128778
Xie P, Williams D S, Atilla‐Gokcumen G E, Milk L, Xiao M, Smalley K S M, Herlyn M, Meggers E, Marmorstein R. Structure‐Based Design of an Organoruthenium Phosphatidyl‐Inositol‐3‐Kinase Inhibitor Reveals a Switch Governing Lipid Kinase Potency and Selectivity[J]. ACS Chem. Biol., 2008,3(5):305-316. doi: 10.1021/cb800039y
Liu M, Kuo F S, Capistrano K J, Kang D, Nixon B G, Shi W, Chou C, Do M H, Stamatiades E G, Gao S Y, Li S, Chen Y B, Hsieh J J, Hakimi A A, Taniuchi I, Chan T A, Li M O. TGF ‐ β Suppresses Type 2 Immunity to Cancer[J]. Nature, 2020,587(7832):115-120. doi: 10.1038/s41586-020-2836-1
Li S, Liu M, Do M H, Chou C, Stamatiades E G, Nixon B G, Shi W, Zhang X, Li P, Gao S Y, Capistrano K J, Xu H, Cheung N K V, Li M O. Cancer Immunotherapy via Targeted TGF ‐β Signalling Blockade in TH Cells[J]. Nature, 2020,587(7832):121-125. doi: 10.1038/s41586-020-2850-3
Wang R S, Feng J, Lei Y Z, Chen D M, Lian M L. New 3D Supramolecular Ag(Ⅰ) Coordination Polymer Crystal Containing 2‐Quinaldic Acid Radical Biological Ligand: Crystal Structure and Anticancer Activity[J]. Cryst. Res. Technol., 2018,53(8)1800065. doi: 10.1002/crat.201800065
Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Crystallogr., 2009,42(2):339-341. doi: 10.1107/S0021889808042726
Sheldrick G M. Crystal Structure Refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.
Sheldrick G M. SHELXT—Integrated Space‐Group and Crystal‐Structure Determination[J]. Acta Crystallogr. Sect. A, 2015,A71:3-8.
Spackman M A, Jayatilaka D. Hirshfeld Surface Analysis[J]. CrystEngComm, 2009,11(1):19-32. doi: 10.1039/B818330A
Dallakyan S, Olson A J. Small‐Molecule Library Screening by Docking with PyRx//Hempel J E, Williams C H, Hong C C. Chemical Biology. Methods in Molecular Biology: Vol. 1263. New York: Humana Press, 2014: 243‐250
WANG Y B, YU M, ZHANG Y, SU Q, DONG W K. Syntheses, Crystal Structures, Hirshfeld Surfaces Analyses and Fluorescence Properties of Two Tetranuclear Nickel(Ⅱ) and Zinc(Ⅱ) Complexes Based on an Unsymmetrical Salamo‐like N2O4‐Donor Ligand[J]. Chinese J. Inorg. Chem., 2020,36(10):1967-1976. doi: 10.11862/CJIC.2020.215
Ma Y, Zhu Y J, Wang C, Pan D L, Liu S, Yang M Y, Zhang X P, Yang X T, Zhao W T, Zhou X Y, Li Y D, Pan Y F, Sun J, Wang S H, Guan Z, Zhang L H, Yang Z J. Annealing Novel Nucleobase ‐Lipids with Oligonucleotides or Plasmid DNA Based on H‐Bonding or π‐π Interaction: Assemblies and Transfections[J]. Biomaterials, 2018,178:147-157. doi: 10.1016/j.biomaterials.2018.06.012
Zhuang W R, Wang Y, Cui P F, Xing L, Lee J, Kim D, Jiang H L, Oh Y K. Applications of π‐π Stacking Interactions in the Design of Drug‐Delivery Systems[J]. J. Controlled Release, 2019,294:311-326. doi: 10.1016/j.jconrel.2018.12.014
Bhattacharyya M K, Dutta D, Nashre‐ul‐Islam S M, Frontera A, Sharma P, Verma A K, Das A. Energetically Significant Antiparallel π‐Stacking Contacts in Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) Coordination Compounds of Pyridine‐2, 6‐Dicarboxylates: Antiproliferative Evaluation and Theoretical Studies[J]. Inorg. Chim. Acta, 2020,501119233. doi: 10.1016/j.ica.2019.119233
Suezawa H, Yoshida T, Umezawa Y, Tsuboyama S, Nishio M. CH/π Interactions Implicated in the Crystal Structure of Transition Metal Compounds—A Database Study[J]. Eur. J. Inorg. Chem., 2002(12):3148-3155.
Li S, Li G L, Wang W, Liu Y, Cao Z M, Cao X L, Huang Y G. A 2D Metal‐Organic Framework Interpenetrated by a 2D Supramolecular Framework Assembled by CH/π Interactions[J]. Inorg. Chem. Commun., 2021,130108705. doi: 10.1016/j.inoche.2021.108705
Basu Baul T S, Chaurasiya A, Vasquez‐Ríos M G, Höpfl H. Zinc(Ⅱ) Complexes Constructed from an Adamantane‐Functionalized Pyridine Schiff Base—Influence of the Counterion on the Supramolecu‐ lar Organization by Means of C—H…O, C—H…N, C—H… π and π…π Interactions[J]. J. Mol. Struct., 2022,1247131241. doi: 10.1016/j.molstruc.2021.131241
Muddassir M. A New 1D Cu(Ⅱ)‐W(Cn)8 Based Coordination Polymer: Crystallographic Structural Architecture, Hirshfeld Surface, DFT and Luminescent Analyses[J]. J. Organomet. Chem., 2020,926121499. doi: 10.1016/j.jorganchem.2020.121499
Zahra R, Masoud M, Mohammad C, Joel T M. Accurate DFT Studies on Crystalline Network Formation of a New Co(Ⅱ) Complex Bearing 8‐Aminoquinoline[J]. Inorg. Chim. Acta, 2018,473:152-159. doi: 10.1016/j.ica.2017.12.033
Burkhanova T M, Babashkina M G, Taskin‐Tok T, Sharov A V, Safin D A. Naphthalene‐Based Bis‐N ‐Salicylidene Aniline Dyes: Crystal Structures, Hirshfeld Surface Analysis, Computational Study and Molecular Docking with the SARS ‐ CoV ‐ 2 Proteins[J]. J. Iran. Chem. Soc., 2022,19(5):1979-1991. doi: 10.1007/s13738-021-02438-y
Boaz H, Rollefson G K. The Quenching of Fluorescence[J]. Deviations from the Stern‐Volmer Law. J. Am. Chem. Soc., 1950,72(8):3435-3443.
Almaqwashi A A, Zhou W, Naufer M N, Riddell I A, Yilmaz Ö H, Lippard S J, Williams M C. DNA Intercalation Facilitates Efficient DNA‐Targeted Covalent Binding of Phenanthriplatin[J]. J. Am. Chem. Soc., 2019,141(4):1537-1545. doi: 10.1021/jacs.8b10252
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Long TANG , Yaxin BIAN , Luyuan CHEN , Xiangyang HOU , Xiao WANG , Jijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180
Xiaxia LIU , Xiaofang MA , Luxia GUO , Xianda HAN , Sisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Xiumei LI , Linlin LI , Bo LIU , Yaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
Peng Meng , Qian-Cheng Luo , Aidan Brock , Xiaodong Wang , Mahboobeh Shahbazi , Aaron Micallef , John McMurtrie , Dongchen Qi , Yan-Zhen Zheng , Jingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542
Xueqi Zhang , Han Gao , Jianan Xu , Min Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
Lulu DONG , Jie LIU , Hua YANG , Yupei FU , Hongli LIU , Xiaoli CHEN , Huali CUI , Lin LIU , Jijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Feng-Qing Huang , Yu Wang , Ji-Wen Wang , Dai Yang , Shi-Lei Wang , Yuan-Ming Fan , Raphael N. Alolga , Lian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
1: cDNA=5.0 μmol·L-1, cEB=1.0 μmol·L-1; 2 ‐ 8: ccomplex=0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 μmol·L-1+EB‐DNA