Citation: Ren‐Shu WANG, Jing FENG, Yuan‐Lan WANG, Chen‐Feng OUYANG. A Complex of Silver(Ⅰ) with N⁃O Chelating Agent and Phosphine Ligand: Design, Structures, and Biological Activity[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1609-1622. doi: 10.11862/CJIC.2022.167 shu

A Complex of Silver(Ⅰ) with N⁃O Chelating Agent and Phosphine Ligand: Design, Structures, and Biological Activity

  • Corresponding author: Ren‐Shu WANG, wangrenshu@126.com
  • Received Date: 24 January 2022
    Revised Date: 10 May 2022

Figures(16)

  • A new Ag(Ⅰ) complex, [Ag(Qina) (Tpp)2]·1.5H2O (Qina=2 ‐ quinolinecarboxylate, Tpp=triphenylphosphine), was synthesized and successfully obtained as a single crystal. The structure of the complex was characterized by single‐crystal X‐ray diffraction, IR, NMR, and powder X‐ray diffraction. The results show that the complex belongs to monoclinic crystal system, C2/c space group, and the unit cell parameters are a=3.195 90(13) nm, b= 1.210 96(4) nm, c=2.319 74(7) nm, β=102.166(4)°, V=8.776 0(5) nm3, and Z=8. The supramolecular structures and weak intermolecular force of the complex were deduced by Hirshfeld surface analysis. Meanwhile, the biological activities of the complex were tested by evaluating DNA ‐ binding efficacy, antibacterial activity, and in vitro toxic activity of cancer cells.
  • 加载中
    1. [1]

      Medici S, Peana M, Crisponi G, Nurchi V M, Lachowicz J I, Remelli M, Zoroddu M A. Silver Coordination Compounds: A New Horizon in Medicine[J]. Coord. Chem. Rev., 2016,327-328:349-359. doi: 10.1016/j.ccr.2016.05.015

    2. [2]

      Fox C L Jr. Silver Sulfadiazine—A New Topical Therapy for Pseudomonas in Burns: Therapy of Pseudomonas Infection in Burns[J]. Arch. Surg., 1968,96(2):184-188. doi: 10.1001/archsurg.1968.01330200022004

    3. [3]

      Kuchar J, Rust J, Lehmann C W, Mohr F. Silver(Ⅰ) Complexes with Camphorsulfonato and Phosphine Ligands: Structural Diversity and Antibacterial Activity[J]. Inorg. Chem., 2020,59(15):10557-10568. doi: 10.1021/acs.inorgchem.0c00982

    4. [4]

      Kascatan‐Nebioglu A, Panzner M J, Tessier C A, Cannon C L, Youngs W J. N‐Heterocyclic Carbene‐Silver Complexes: A New Class of Antibiotics[J]. Coord. Chem. Rev., 2007,251(5):884-895.

    5. [5]

      Wakshlak R B K, Pedahzur R, Avnir D. Antibacterial Activity of Silver ‐ Killed Bacteria: The"Zombies"Effect[J]. Sci. Rep., 2015,5(1)9555. doi: 10.1038/srep09555

    6. [6]

      Mariam J, Sivakami S, Kothari D C, Dongre P M. Bioactivity of Albumins Bound to Silver Nanoparticles[J]. Protein J., 2014,33(3):258-266. doi: 10.1007/s10930-014-9553-2

    7. [7]

      Zhang S K, Du C, Wang Z Z, Han X G, Zhang K, Liu L H. Reduced Cytotoxicity of Silver Ions to Mammalian Cells at High Concentration Due to the Formation of Silver Chloride[J]. Toxicol. In Vitro, 2013,27(2):739-744. doi: 10.1016/j.tiv.2012.12.003

    8. [8]

      Mihorianu M, Franz M H, Jones P G, Freytag M, Kelter G, Fiebig H H, Tamm M, Neda I. N‐Heterocyclic Carbenes Derived from Imidazo‐[1, 5‐a]pyridines Related to Natural Products: Synthesis, Structure and Potential Biological Activity of Some Corresponding Gold and Silver Complexes[J]. Appl. Organomet. Chem., 2016,30(7):581-589.

    9. [9]

      Kavitha R, Nirmala S, Nithyabalaji R, Sribalan R. Biological Evaluation, Molecular Docking and DFT Studies of Charge Transfer Complexes of Quinaldic Acid with Heterocyclic Carboxylic Acid[J]. J. Mol. Struct., 2020,1204127508. doi: 10.1016/j.molstruc.2019.127508

    10. [10]

      Högberg A G S, Madan K, Moberg C, Sjöberg B, Weber M, Muhammed M. Selective Reagents for Solvent Extraction of Metals—Ⅰ. Quinaldic Acids[J]. Polyhedron, 1985,4(6):971-977. doi: 10.1016/S0277-5387(00)84066-8

    11. [11]

      Shaw M J, Hill S J, Jones P. Chelation Ion Chromatography of Metal Ions Using High Performance Substrates Dynamically Modified with Heterocyclic Carboxylic Acids[J]. Anal. Chim. Acta, 1999,401(1/2):65-71.

    12. [12]

      Li M H, Dong X H, Zhang N, Jérôme F, Gu Y L. Eco‐Efficient Synthesis of 2‐Quinaldic Acids from Furfural[J]. Green Chem., 2019,21(17):4650-4655. doi: 10.1039/C9GC02206F

    13. [13]

      Song F H. Quinaldic Acid as a New Matrix for Matrix‐Assisted Laser Desorption/Ionization of Nucleic Acids. Rapid Commun[J]. Mass Spectrom., 2003,17(15):1802-1807.

    14. [14]

      Badawy A B B. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects[J]. Int. J. Tryptophan Res., 2017,101178646917691938.

    15. [15]

      Foster A C, Vezzani A, French E D, Schwarcz R. Kynurenic Acid Blocks Neurotoxicity and Seizures Induced in Rats by the Related Brain Metabolite Quinolinic Acid[J]. Neurosci. Lett., 1984,48(3):273-278. doi: 10.1016/0304-3940(84)90050-8

    16. [16]

      Williams M, Zhang Z, Nance E, Drewes J L, Lesniak W G, Singh S, Chugani D C, Rangaramanujam K, Graham D R, Kannan S. Maternal Inflammation Results in Altered Tryptophan Metabolism in Rabbit Placenta and Fetal Brain[J]. Dev. Neurosci., 2017,39(5):399-412. doi: 10.1159/000471509

    17. [17]

      Fila M, Chojnacki J, Pawlowska E, Szczepanska J, Chojnacki C, Blasiak J. Kynurenine Pathway of Tryptophan Metabolism in Migraine and Functional Gastrointestinal Disorders[J]. Int. J. Mol. Sci., 2021,22(18)10134. doi: 10.3390/ijms221810134

    18. [18]

      Fu Q Y, Tan Z, Shi L G, Xun W J. Resveratrol Attenuates Diquat‐Induced Oxidative Stress by Regulating Gut Microbiota and Metabolome Characteristics in Piglets[J]. Front. Microbiol., 2021,12695155. doi: 10.3389/fmicb.2021.695155

    19. [19]

      Lee C H, Lee H S. Growth Inhibiting Activity of Quinaldic Acid Isolated from Ephedra Pachyclada against Intestinal Bacteria[J]. J. Korean Soc. Appl. Biol. Chem., 2009,52(4):331-335. doi: 10.3839/jksabc.2009.059

    20. [20]

      Sun X M, Savidge T, Feng H P. The Enterotoxicity of Clostridium Difficile Toxins[J]. Toxins, 2010,2(7):1848-1880. doi: 10.3390/toxins2071848

    21. [21]

      Silva R O S, Dorella F A, Figueiredo H C P, Costa É A, Pelicia V, Ribeiro B L D, Ribeiro M G, Paes A C, Megid J, Lobato F C F. Clostridium Perfringens and C. Difficile in Parvovirus‐Positive Dogs[J]. Anaerobe, 2017,48:66-69. doi: 10.1016/j.anaerobe.2017.07.001

    22. [22]

      Frederik S S, Mads F B, Endre S, Anders M B. Prevalence of Salmonella Species, Clostridium Perfringens, and Clostridium Difficile in the Feces of Healthy Elephants (Loxodonta Species and Elephas Maximus) In Europe[J]. J. Zoo Wildl. Med., 2021,51(4):752-760.

    23. [23]

      Langner E, Jeleniewicz W, Turski W A, Plech T. Quinaldic Acid Induces Changes in the Expression of P53 Tumor Suppressor Both on Protein and Gene Level in Colon Cancer LS180 Cells[J]. Pharmacol. Rep., 2019,71(2):189-193. doi: 10.1016/j.pharep.2018.10.016

    24. [24]

      Kelly W L, Pan L, Li C X. Thiostrepton Biosynthesis: Prototype for a New Family of Bacteriocins[J]. J. Am. Chem. Soc., 2009,131(12):4327-4334. doi: 10.1021/ja807890a

    25. [25]

      Nicolaou K C, Safina B S, Funke C, Zak M, Zécri F J. Stereocontrolled Synthesis of the Quinaldic Acid Macrocyclic System of Thiostrepton[J]. Angew. Chem. Int. Ed., 2002,41(11):1937-1940. doi: 10.1002/1521-3773(20020603)41:11<1937::AID-ANIE1937>3.0.CO;2-Y

    26. [26]

      Duan P P, Zheng Q F, Lin Z, Wang S F, Chen D D, Liu W. Molecular Engineering of Thiostrepton via Single"Base"‐Based Mutagenesis to Generate Side Ring‐Derived Variants[J]. Org. Chem. Front., 2016,3(10):1254-1258. doi: 10.1039/C6QO00320F

    27. [27]

      Zheng Q F, Wang S F, Duan P P, Liao R J, Chen D D, Liu W. An α/β‐Hydrolase Fold Protein in the Biosynthesis of Thiostrepton Exhibits a Dual Activity for Endopeptidyl Hydrolysis and Epoxide Ring Opening/Macrocyclization[J]. Proc. Natl. Acad. Sci. U. S. A., 2016,113(50):14318-14323. doi: 10.1073/pnas.1612607113

    28. [28]

      El‐bendary M M, Etaiw S E H. Structure and Applications of Organotin Complex Based on Trimethyltin Cation and Quinaldic Acid[J]. Appl. Organomet. Chem., 2018,32(3)e4152. doi: 10.1002/aoc.4152

    29. [29]

      Silva E N, Silva P A B, Graminha A E, Oliveira P F, Damasceno J L, Tavares D C, Batista A A, Von Poelhsitz G. Synthesis, Characterization, Cytotoxic Activity, and Interactions with CT ‐DNA and BSA of Cationic Ruthenium(Ⅱ) Complexes Containing Dppm and Quinoline Carboxylates[J]. Bioinorg. Chem. Appl., 2017,20172562780.

    30. [30]

      Im Y H, Kang E, Kim I H, Kim D E, Shin H K, Lee B J. Synthesis and OLED Properties of Zinc Complexes Based on Quinaldic Acid[J]. Mol. Cryst. Liq. Cryst., 2014,599(1):105-111. doi: 10.1080/15421406.2014.935971

    31. [31]

      Tanaka S, Suzuki Y, Saburi H, Kitamura M. Soft Ruthenium and Hard Brønsted Acid Combined Catalyst for Efficient Cleavage of Allyloxy Bonds[J]. Application to Protecting Group Chemistry. Tetrahedron, 2015,71(37):6559-6568.

    32. [32]

      Shankar K, Kirillov A M, Baruah J B. Bottom Up Synthesis for Homo‐and Heterometallic 2, 3‐Pyridinedicarboxylate Coordination Compounds[J]. Polyhedron, 2015,102:521-529. doi: 10.1016/j.poly.2015.10.031

    33. [33]

      İlkimen H, Yenikaya C, Gülbandılar A, Sarı M. Synthesis and Characterization of a Novel Proton Salt of 2‐Amino‐6‐nitrobenzothiazole with 2, 6‐Pyridinedicarboxylic Acid and Its Metal Complexes and Their Antimicrobial and Antifungal Activity Studies[J]. J. Mol. Struct., 2016,1120:25-33. doi: 10.1016/j.molstruc.2016.04.068

    34. [34]

      Banti C N, Papatriantafyllopoulou C, Manoli M, Tasiopoulos A J, Hadjikakou S K. Nimesulide Silver Metallodrugs, Containing the Mitochondriotropic, Triaryl Derivatives of Pnictogen; Anticancer Activity against Human Breast Cancer Cells[J]. Inorg. Chem., 2016,55(17):8681-8696. doi: 10.1021/acs.inorgchem.6b01241

    35. [35]

      Trost B M, Machacek M R, Tsui H C. Development of Aliphatic Alcohols as Nucleophiles for Palladium‐Catalyzed DYKAT Reactions: Total Synthesis of (+)‐Hippospongic Acid A[J]. J. Am. Chem. Soc., 2005,127(19):7014-7024. doi: 10.1021/ja050340q

    36. [36]

      Banti C N, Hatzidimitriou A G, Kourkoumelis N, Hadjikakou S K. Diclofenac Conjugates with Biocides through Silver(Ⅰ) Ions (CoMeD′s); Development of a Reliable Model for the Prediction of Anti‐proliferation of NSAID′s‐Silver Formulations[J]. J. Inorg. Biochem., 2019,194:7-18. doi: 10.1016/j.jinorgbio.2019.01.020

    37. [37]

      Richards V N, Rath N P, Buhro W E. Pathway from a Molecular Precursor to Silver Nanoparticles: The Prominent Role of Aggregative Growth[J]. Chem. Mater., 2010,22(11):3556-3567. doi: 10.1021/cm100871g

    38. [38]

      LI Z F, ZHANG Z W, CUI Y Z, LIU M, YANG Y P, JIN Q H. Syntheses, Characterizations and Crystal Structures of Two Kinds of Silver(Ⅰ) Complexes Derived from Thiol Ligand[J]. Chinese J. Inorg. Chem., 2016,32(1):139-144.  

    39. [39]

      Umadevi M, Muthuraj V, Vanajothi R. Structural, Cytotoxicity and Molecular Docking Studies of Some Quinoline Schiff Bases and Their Pd(Ⅱ), Mn(Ⅱ) and Ru(Ⅱ) Complexes[J]. J. Mol. Struct., 2020,1221128778. doi: 10.1016/j.molstruc.2020.128778

    40. [40]

      Xie P, Williams D S, Atilla‐Gokcumen G E, Milk L, Xiao M, Smalley K S M, Herlyn M, Meggers E, Marmorstein R. Structure‐Based Design of an Organoruthenium Phosphatidyl‐Inositol‐3‐Kinase Inhibitor Reveals a Switch Governing Lipid Kinase Potency and Selectivity[J]. ACS Chem. Biol., 2008,3(5):305-316. doi: 10.1021/cb800039y

    41. [41]

      Liu M, Kuo F S, Capistrano K J, Kang D, Nixon B G, Shi W, Chou C, Do M H, Stamatiades E G, Gao S Y, Li S, Chen Y B, Hsieh J J, Hakimi A A, Taniuchi I, Chan T A, Li M O. TGF ‐ β Suppresses Type 2 Immunity to Cancer[J]. Nature, 2020,587(7832):115-120. doi: 10.1038/s41586-020-2836-1

    42. [42]

      Li S, Liu M, Do M H, Chou C, Stamatiades E G, Nixon B G, Shi W, Zhang X, Li P, Gao S Y, Capistrano K J, Xu H, Cheung N K V, Li M O. Cancer Immunotherapy via Targeted TGF ‐β Signalling Blockade in TH Cells[J]. Nature, 2020,587(7832):121-125. doi: 10.1038/s41586-020-2850-3

    43. [43]

      Wang R S, Feng J, Lei Y Z, Chen D M, Lian M L. New 3D Supramolecular Ag(Ⅰ) Coordination Polymer Crystal Containing 2‐Quinaldic Acid Radical Biological Ligand: Crystal Structure and Anticancer Activity[J]. Cryst. Res. Technol., 2018,53(8)1800065. doi: 10.1002/crat.201800065

    44. [44]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Crystallogr., 2009,42(2):339-341. doi: 10.1107/S0021889808042726

    45. [45]

      Sheldrick G M. Crystal Structure Refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    46. [46]

      Sheldrick G M. SHELXT—Integrated Space‐Group and Crystal‐Structure Determination[J]. Acta Crystallogr. Sect. A, 2015,A71:3-8.

    47. [47]

      Spackman M A, Jayatilaka D. Hirshfeld Surface Analysis[J]. CrystEngComm, 2009,11(1):19-32. doi: 10.1039/B818330A

    48. [48]

      Dallakyan S, Olson A J. Small‐Molecule Library Screening by Docking with PyRx//Hempel J E, Williams C H, Hong C C. Chemical Biology. Methods in Molecular Biology: Vol. 1263. New York: Humana Press, 2014: 243‐250

    49. [49]

      WANG Y B, YU M, ZHANG Y, SU Q, DONG W K. Syntheses, Crystal Structures, Hirshfeld Surfaces Analyses and Fluorescence Properties of Two Tetranuclear Nickel(Ⅱ) and Zinc(Ⅱ) Complexes Based on an Unsymmetrical Salamo‐like N2O4‐Donor Ligand[J]. Chinese J. Inorg. Chem., 2020,36(10):1967-1976. doi: 10.11862/CJIC.2020.215

    50. [50]

      Ma Y, Zhu Y J, Wang C, Pan D L, Liu S, Yang M Y, Zhang X P, Yang X T, Zhao W T, Zhou X Y, Li Y D, Pan Y F, Sun J, Wang S H, Guan Z, Zhang L H, Yang Z J. Annealing Novel Nucleobase ‐Lipids with Oligonucleotides or Plasmid DNA Based on H‐Bonding or ππ Interaction: Assemblies and Transfections[J]. Biomaterials, 2018,178:147-157. doi: 10.1016/j.biomaterials.2018.06.012

    51. [51]

      Zhuang W R, Wang Y, Cui P F, Xing L, Lee J, Kim D, Jiang H L, Oh Y K. Applications of ππ Stacking Interactions in the Design of Drug‐Delivery Systems[J]. J. Controlled Release, 2019,294:311-326. doi: 10.1016/j.jconrel.2018.12.014

    52. [52]

      Bhattacharyya M K, Dutta D, Nashre‐ul‐Islam S M, Frontera A, Sharma P, Verma A K, Das A. Energetically Significant Antiparallel π‐Stacking Contacts in Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) Coordination Compounds of Pyridine‐2, 6‐Dicarboxylates: Antiproliferative Evaluation and Theoretical Studies[J]. Inorg. Chim. Acta, 2020,501119233. doi: 10.1016/j.ica.2019.119233

    53. [53]

      Suezawa H, Yoshida T, Umezawa Y, Tsuboyama S, Nishio M. CH/π Interactions Implicated in the Crystal Structure of Transition Metal Compounds—A Database Study[J]. Eur. J. Inorg. Chem., 2002(12):3148-3155.

    54. [54]

      Li S, Li G L, Wang W, Liu Y, Cao Z M, Cao X L, Huang Y G. A 2D Metal‐Organic Framework Interpenetrated by a 2D Supramolecular Framework Assembled by CH/π Interactions[J]. Inorg. Chem. Commun., 2021,130108705. doi: 10.1016/j.inoche.2021.108705

    55. [55]

      Basu Baul T S, Chaurasiya A, Vasquez‐Ríos M G, Höpfl H. Zinc(Ⅱ) Complexes Constructed from an Adamantane‐Functionalized Pyridine Schiff Base—Influence of the Counterion on the Supramolecu‐ lar Organization by Means of C—H…O, C—H…N, C—H… π and ππ Interactions[J]. J. Mol. Struct., 2022,1247131241. doi: 10.1016/j.molstruc.2021.131241

    56. [56]

      Muddassir M. A New 1D Cu(Ⅱ)‐W(Cn)8 Based Coordination Polymer: Crystallographic Structural Architecture, Hirshfeld Surface, DFT and Luminescent Analyses[J]. J. Organomet. Chem., 2020,926121499. doi: 10.1016/j.jorganchem.2020.121499

    57. [57]

      Zahra R, Masoud M, Mohammad C, Joel T M. Accurate DFT Studies on Crystalline Network Formation of a New Co(Ⅱ) Complex Bearing 8‐Aminoquinoline[J]. Inorg. Chim. Acta, 2018,473:152-159. doi: 10.1016/j.ica.2017.12.033

    58. [58]

      Burkhanova T M, Babashkina M G, Taskin‐Tok T, Sharov A V, Safin D A. Naphthalene‐Based Bis‐N ‐Salicylidene Aniline Dyes: Crystal Structures, Hirshfeld Surface Analysis, Computational Study and Molecular Docking with the SARS ‐ CoV ‐ 2 Proteins[J]. J. Iran. Chem. Soc., 2022,19(5):1979-1991. doi: 10.1007/s13738-021-02438-y

    59. [59]

      Boaz H, Rollefson G K. The Quenching of Fluorescence[J]. Deviations from the Stern‐Volmer Law. J. Am. Chem. Soc., 1950,72(8):3435-3443.

    60. [60]

      Almaqwashi A A, Zhou W, Naufer M N, Riddell I A, Yilmaz Ö H, Lippard S J, Williams M C. DNA Intercalation Facilitates Efficient DNA‐Targeted Covalent Binding of Phenanthriplatin[J]. J. Am. Chem. Soc., 2019,141(4):1537-1545. doi: 10.1021/jacs.8b10252

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    3. [3]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    4. [4]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    9. [9]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    10. [10]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    11. [11]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    12. [12]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    13. [13]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    14. [14]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    15. [15]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    16. [16]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    17. [17]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    18. [18]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    19. [19]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    20. [20]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

Metrics
  • PDF Downloads(6)
  • Abstract views(489)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return