Citation: Qiang XIA, Xiao‐Gang LIAO, Hai‐Li SHEN, Lin ZHENG, Gang LI, Jun SHEN. Co3O4 Doped with Europium as a Performance Enhanced Heterogeneous Catalyst to Activate Peroxymonosulfate for Degradation of Methylene Blue[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1567-1576. doi: 10.11862/CJIC.2022.163 shu

Co3O4 Doped with Europium as a Performance Enhanced Heterogeneous Catalyst to Activate Peroxymonosulfate for Degradation of Methylene Blue

  • Corresponding author: Gang LI, ligang2015@cqut.edu.cn
  • Received Date: 1 April 2022
    Revised Date: 8 June 2022

Figures(7)

  • Employing Co(NO3)2 and Eu(NO3)3 as raw materials, a series of porous Co/Eu bimetallic ‐oxide catalysts were synthesized through an oxalate‐pyrolysis method, and their catalytic performances in activating peroxymonosulfate (PMS) for degradation of methylene blue (MB) were evaluated. The results showed that the sample with a Co/Eu molar ratio (nCo/nEu) of 9 (Co9Eu1) exhibited the most excellent catalytic property towards PMS decomposition for MB removal. The degradation ratio of MB was 86.66% in the system of Co9Eu1/PMS, while it was only 52.62% for the counterpart, under the reaction conditions: catalyst addition of 0.10 g·L-1, PMS concentration of 0.6 mmol·L-1, and a reaction temperature of 25 ℃. The outstanding catalytic performance of Co9Eu1 is attributed to the electron ‐ deficient property of Eu3+, which can enhance the polarization of PMS adsorbed on the surface of the catalyst and then make PMS easier to be activated by the primary catalytic component of Co3O4. Meanwhile, it is found that both C2O42- and HCO3- anions have obvious inhibitory effects on the degradation efficiency of MB in the Co9Eu1/PMS reaction system. In addition, quenching experiments and electron paramagnetic resonance spectroscopies (EPR) identify that reactive oxygen species (SO4-·, ·OH and ·O2-) and non‐radical reactive oxygen species (1O2) both exist in the reaction system. Among them, SO4-· plays a key role in MB oxidative degradation process. Furthermore, no significant changes in catalytic performance in four consecutive cycles was observed.
  • 加载中
    1. [1]

      Ghanbari F, Moradi M. Application of Peroxymonosulfate and Its Activation Methods for Degradation of Environmental Organic Pollutants: Review[J]. Chem. Eng. J., 2017,310:41-62. doi: 10.1016/j.cej.2016.10.064

    2. [2]

      Kohantorabi M, Moussavi G, Giannakis S. A Review of the Innovations in Metal ‐ and Carbon ‐ Based Catalysts Explored for Heterogeneous Peroxymonosulfate (PMS) Activation, with Focus on Radical vs. Non ‐ radical Degradation Pathways of Organic Contaminants[J]. Chem. Eng. J., 2021,411127957. doi: 10.1016/j.cej.2020.127957

    3. [3]

      Lyu C, Li Y C, Fang C, Feng W, Sun W T, Zhang Q H. Enhanced Peroxymonosulfate Activation by NixCo1-xOOH for Efficient Catalytic Oxidation of Organic Pollutants[J]. Chem. Res. Chin. Univ., 2019,35:440-448. doi: 10.1007/s40242-019-9025-5

    4. [4]

      Zheng H, Bao J G, Huang Y, Xiang L J, Faheem , Ren B X, Du J K, Nadagouda M N, Dionysiou D D. Efficient Degradation of Atrazine with Porous Sulfurized Fe2O3 as Catalyst for Peroxymonosulfate Activation[J]. Appl. Catal. B, 2019,259118056. doi: 10.1016/j.apcatb.2019.118056

    5. [5]

      Gao Y, Zhu W H, Liu J W, Lin P, Zhang J F, Huang T L, Liu K Q. Mesoporous Sulfur ‐ Doped CoFe2O4 as a New Fenton Catalyst for the Highly Efficient Pollutants Removal[J]. Appl. Catal. B, 2021,295120273. doi: 10.1016/j.apcatb.2021.120273

    6. [6]

      Tian X K, Tian C, Nie Y L, Dai C, Yang C, Tian N, Zhou Z X, Li Y, Wang Y X. Controlled Synthesis of Dandelion ‐ like NiCo2O 4 Microspheres and Their Catalytic Performance for Peroxymonosulfate Activation in Humic Acid Degradation[J]. Chem. Eng. J., 2018,331:144-151. doi: 10.1016/j.cej.2017.08.115

    7. [7]

      Chen S, Liu X D, Gao S Y, Chen Y C, Rao L J, Yao Y Y, Wu Z W. CuCo2O4 Supported on Activated Carbon as a Novel Heterogeneous Catalyst with Enhanced Peroxymonosulfate Activity for Efficient Removal of Organic Pollutants[J]. Environ. Res., 2020,183109245. doi: 10.1016/j.envres.2020.109245

    8. [8]

      Wang J Q, Jiang Y, Gao C Y, Li Y B, Wu X Y. Synergistic Effect of Bimetal in Three ‐ Dimensional Hierarchical MnCo2O4 for High Efficiency of Photoinduced Fenton ‐ like Reaction[J]. Surf. Interfaces, 2021,27101482. doi: 10.1016/j.surfin.2021.101482

    9. [9]

      Qin Q D, Gao X, Wu X, Liu Y H. NaBH4 ‐ Treated Cobalt ‐ Doped g‐C3N 4 for Enhanced Activation of Peroxymonosulfate[J]. Mater. Lett., 2019,256126623. doi: 10.1016/j.matlet.2019.126623

    10. [10]

      Zhang Q Y, Sun X Q, Dang Y, Zhu J J, Zhao Y, Xu X X, Zhou Y Z. A Novel Electrochemically Enhanced Homogeneous PMS‐Heterogeneous CoFe2O4 Synergistic Catalysis for the Efficient Removal of Levofloxacin[J]. J. Hazard. Mater., 2022,424127651. doi: 10.1016/j.jhazmat.2021.127651

    11. [11]

      LIU L Y, SUN Z R, YE W B, TAN W. Degradation of Acid Red B with Co3O4 Activated Peroxymonosulfate with Ultrasound Irradiation[J]. Chemical Industry and Engineering Progress, 2016,302(11):3663-3668.  

    12. [12]

      WU G R, LIU X Y, WANG D J, WANG S J, DONG P, ZHAO C C. Degradation of Rhodamine B with MnO2 Activated Peroxymonosulfate with Ultrasound Irradiation[J]. Applied Chemical Industry, 2018,316(6):1109-1113. doi: 10.3969/j.issn.1671-3206.2018.06.009

    13. [13]

      Sang W J, Li Z X, Huang M J, Wu X H, Li D Y, Mei L J, Cui J Q. Enhanced Transition Metal Oxide Based Peroxymonosulfate Activation by Hydroxylamine for the Degradation of Sulfamethoxazole[J]. Chem. Eng. J., 2020,383123057. doi: 10.1016/j.cej.2019.123057

    14. [14]

      Shi X D, Li Y T, Zhang Z, Sun L, Peng Y Z. Enhancement of Ciprofloxacin Degradation in the Fe /Peroxymonosulfate System by Protocatechuic Acid over a Wide Initial pH Range[J]. Chem. Eng. J., 2019,372:1113-1121.

    15. [15]

      Wang Y, Wu Y, Yu Y F, Pan T, Li D T, Lambropoulou D, Yang X. Natural Polyphenols Enhanced the Cu /peroxymonosulfate (PMS) Oxidation: The Contribution of Cu and HO·[J]. Water Res., 2020,186116326. doi: 10.1016/j.watres.2020.116326

    16. [16]

      DONG Y J. Efficiency and Mechanism of Organic Chelant‑Modified Iron‑Based Nanoparticles in Activation of Peroxymonosulfate. Nanjing: Southeast University, 2019: 39‐66

    17. [17]

      Xu A H, Wei Y, Zou Q C, Zhang W Y, Jin Y Z, Wang Z Y, Yang L Z, Li X X. The Effects of Nonredox Metal Ions on the Activation of Peroxymonosulfate for Organic Pollutants Degradation in Aqueous Solution with Cobalt Based Catalysts: A New Mechanism Investigation[J]. J. Hazard. Mater., 2020,382121081. doi: 10.1016/j.jhazmat.2019.121081

    18. [18]

      Li X N, Rykov A I, Zhang B, Zhang Y J, Wang J H. Graphene Encapsulated FexCoy Nanocages Derived from Metal‐Organic Frameworks as Efficient Activators for Peroxymonosulfate[J]. Catal. Sci. Technol., 2016,6(20):7486-7494. doi: 10.1039/C6CY01479H

    19. [19]

      Oh W D, Lua S K, Dong Z L, Lim T T. High Surface Area DPA ‐ hematite for Efficient Detoxification of Bisphenol A via Peroxymonosulfate Activation[J]. J. Mater. Chem. A, 2014,2(38):15836-15845. doi: 10.1039/C4TA02758B

    20. [20]

      Wacławek S, Grübel K, Černík M. Simple Spectrophotometric Determination of Monopersulfate[J]. Spectrochim. Acta Part A, 2015,149:928-933. doi: 10.1016/j.saa.2015.05.029

    21. [21]

      Wang J L, Wang S Z. Effect of Inorganic Anions on the Performance of Advanced Oxidation Processes for Degradation of Organic Contaminants[J]. Chem. Eng. J., 2021,411128392. doi: 10.1016/j.cej.2020.128392

    22. [22]

      Gong Y, Zhao X, Zhang H, Yang B, Xiao K, Guo T, Zhang J J, Shao H X, Wang Y B, Yu G. MOF‐Derived Nitrogen Doped Carbon Modified g‐C3N4 Heterostructure Composite with Enhanced Photocatalytic Activity for Bisphenol A Degradation with Peroxymonosulfate under Visible Light Irradiation[J]. Appl. Catal. B, 2018,233:35-45. doi: 10.1016/j.apcatb.2018.03.077

    23. [23]

      Yao Y J, Cai Y M, Wu G D, Wei F Y, Li X Y, Chen H, Wang S B. Sulfate Radicals Induced from Peroxymonosulfate by Cobalt Manganese Oxides (CoxMn3-xO4) for Fenton ‐ like Reaction in Water[J]. J. Hazard. Mater., 2015,296:128-137.

    24. [24]

      Gao H Y, Huang C H, Mao L, Shao B, Shao J, Yan Z Y, Tang M, Zhu B Z. First Direct and Unequivocal Electron Spin Resonance Spin‐Trapping Evidence for pH‐Dependent Production of Hydroxyl Radicals from Sulfate Radical[J]. Environ. Sci. Technol., 2020,54:14046-14056.

    25. [25]

      Shao S, Li X S, Gong Z M, Fan B, Hu J H, Peng J B, Lu K, Gao S X. A New Insight into the Mechanism in Fe3O4@CuO/PMS System with Low Oxidant Dosage[J]. Chem. Eng. J., 2022,438135474.

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    3. [3]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    6. [6]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    7. [7]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    8. [8]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    15. [15]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    16. [16]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(5)
  • Abstract views(806)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return