Citation: Song QIU, Wen-Ning YAN, Li WANG, Lian-Shan ZHANG, Chao CHEN, Li-Juan MU, Shi-Gang MU. Facile Synthesis of Si@LiAlO2 Nanocomposites as Anode for Lithium-Ion Battery[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(8): 1655-1662. doi: 10.11862/CJIC.2022.154 shu

Facile Synthesis of Si@LiAlO2 Nanocomposites as Anode for Lithium-Ion Battery

  • Corresponding author: Song QIU, qiusong0307@163.com
  • Received Date: 20 March 2022
    Revised Date: 28 May 2022

Figures(6)

  • The nanocomposites of LiAlO2 coated Si nanoparticles (Si@LiAlO2) have been successfully synthesized by the solvothermal method and heat treatment. Si@LiAlO2 formed a dendritic structure with openings and channels between the dendrites. As anode material for lithiumion batteries, electrochemical results showed that as-prepared Si@LiAlO2 nanocomposite achieved a reversible capacity of 364.1 mAh·g-1 after 100 cycles at a current density of 100 mA·g-1. The superior cycling performance is attributed to the nanocomposite dendritic structure, in which nanosized Si particles shorten the diffusion path of lithium ions and the LiAlO2 coating, the voids, and openings between the dendrites help buffer volume changes during charging and discharging.
  • 加载中
    1. [1]

      Yang Y H, Liu S, Bian X F, Feng J K, An Y L, Yuan C. Morphology- and Porosity-Tunable Synthesis of 3D-Nanoporous SiGe Alloy as High-Performance Lithium-Ion Battery Anode[J]. ACS Nano, 2018,12(3):2900-2908. doi: 10.1021/acsnano.8b00426

    2. [2]

      Zhang S J, Qin Z L, Hou Z G, Ye J J, Xu Z B, Qian Y T. Large-Scale Preparation of Black Phosphorus by Molten Salt Method for Energy Storage[J]. ChemPhysMater, 2022,1(1):1-5. doi: 10.1016/j.chphma.2021.09.005

    3. [3]

      Yi T F, Shi L N, Han X, Wang F F, Zhu Y R, Xie Y. Approaching High-Performance Lithium Storage Materials by Constructing Hierar-chical CoNiO2@CeO2 Nanosheets[J]. Energy Environ. Mater., 2021,4(4):586-595. doi: 10.1002/eem2.12140

    4. [4]

      Yi T F, Mei J, Peng P P, Luo S H. Facile Synthesis of Polypyrrole-Modified Li5Cr7Ti6O25 with Improved Rate Performance as Negative Electrode Material for Li-Ion Batteries[J]. Composites Part B, 2019,167:566-572. doi: 10.1016/j.compositesb.2019.03.032

    5. [5]

      Yi T F, Xie Y, Zhu Y R, Zhu R S, Shen H Y. Structural and Thermo-dynamic Stability of Li4Ti5O12 Anode Material for Lithium-Ion Bat-tery[J]. J. Power Sources, 2013,222:448-454. doi: 10.1016/j.jpowsour.2012.09.020

    6. [6]

      Fu L L, Xu A D, Song Y, Ju J H, Sun H, Yan Y R, Wu S P. Pinecone-like Silicon@Carbon Microspheres Covered by Al2O3 Nano-petals for Lithium-Ion Battery Anode under High Temperature[J]. Electrochim. Acta, 2021,387138461. doi: 10.1016/j.electacta.2021.138461

    7. [7]

      Song C S, Zhao B X, Chen S Y, Ma J Y, Du H B. Nickel-Assisted One-Pot Preparation of Graphenic Carbon Matrices Embedded with Silicon Nanoparticles as Anode Materials for Lithium Ion Batteries[J]. Carbon, 2021,179:266-274. doi: 10.1016/j.carbon.2021.04.042

    8. [8]

      Zhang X, Ju Z Y, Zhu Y, Takeuchi K J, Takeuchi E S, Marschilok A C, Yu G H. Multiscale Understanding and Architecture Design of High Energy/Power Lithium-Ion Battery Electrodes[J]. Adv. Energy Mater., 2020,11(2)2000808.

    9. [9]

      Wang J Y, Liao L, Lee H R, Shi F F, Huang W, Zhao J, Pei A, Tang J, Zheng X L, Chen W, Cui Y. Surface-Engineered Mesoporous Silicon Microparticles as High-Coulombic-Efficiency Anodes for Lithium-Ion Batteries[J]. Nano Energy, 2019,61:404-410. doi: 10.1016/j.nanoen.2019.04.070

    10. [10]

      Peng P P, Wu Y R, Li X Z, Zhang J H, Li Y W, Cui P, Yi T F. Toward Superior Lithium/Sodium Storage Performance: Design and Construction of Novel TiO2-Based Anode Materials[J]. Rare Met., 2021,40:3049-3075. doi: 10.1007/s12598-021-01742-z

    11. [11]

      Yi T F, Pan J J, Wei T T, Li Y W, Cao G Z. NiCo2S4-Based Nanocom-posites for Energy Storage in Supercapacitors and Batteries[J]. Nano Today, 2020,33100894. doi: 10.1016/j.nantod.2020.100894

    12. [12]

      Lee D H, Shim H W, Kim D W. Facile Synthesis of Heterogeneous Ni-Si@C Nanocomposites as High Performance Anodes for Li-Ion Batteries[J]. Electrochim. Acta, 2014,146:60-67. doi: 10.1016/j.electacta.2014.08.103

    13. [13]

      Zhang C J, Gu L, Kaskhedikar N, Cui G L, Maier J. Preparation of Silicon@Silicon Oxide Core-Shell Nanowires from a Silica Precursor toward a High Energy Density Li-Ion Battery Anode[J]. ACS Appl. Mater. Interfaces, 2013,5(23):12340-12345. doi: 10.1021/am402930b

    14. [14]

      Kim W S, Hwa Y, Shin J H, Yang M, Sohn H J, Hong S H. Scalable Synthesis of Silicon Nanosheets from Sand as an Anode for Li-Ion Batteries[J]. Nanoscale, 2014,6(8):4297-4302. doi: 10.1039/c3nr05354g

    15. [15]

      An W L, He P, Xiao C M, Guo E M, Pang C L, He X Q, Ren J G, Yuan G H, Du N, Yang D R. Hierarchical Carbon Shell Compositing Microscale Silicon Skeleton as High-Performance Anodes for Lithium-Ion Batteries[J]. ACS Appl. Energy Mater., 2021,4(5):4976-4985. doi: 10.1021/acsaem.1c00529

    16. [16]

      Shi J, Jiang X S, Sun J F, Ban B Y, Li J W, Chen J. Recycled Silicon-Based Anodes with Three-Dimensional Hierarchical Porous Carbon Framework Synthesized by a Self-Assembly CaCO3 Template Meth-od for Lithium Ion Battery[J]. J. Alloy. Compd., 2021,858157703. doi: 10.1016/j.jallcom.2020.157703

    17. [17]

      Liu F, Liu Y X, Wang E Y, Ruan J J, Chen S M. Double-Buffer Silicon-Carbon Anode Material by a Dynamic Self-Assembly Process for Lithium-Ion Batteries[J]. Electrochim. Acta, 2021,393139041. doi: 10.1016/j.electacta.2021.139041

    18. [18]

      Liu R P, Shen C, Dong Y, Qin J L, Wang Q, Iocozzia J, Zhao S Q, Yuan K J, Han C P, Li B H, Lin Z Q. Sandwich-like CNTs/Si/C Nanotubes as High Performance Anode Materials for Lithium-Ion Batteries[J]. J. Mater. Chem. A, 2018,6(30):14797-14804. doi: 10.1039/C8TA04686G

    19. [19]

      Lotfabad E M, Kalisvaart P, Kohandehghan A, Cui K, Kupsta M, Farbod B, Mitlin D. Si Nanotubes ALD Coated with TiO2, TiN or Al2O3 as High Performance Lithium Ion Battery Anodes[J]. J. Mater. Chem. A, 2014,2(8):2504-2516. doi: 10.1039/C3TA14302C

    20. [20]

      Ye J C, An Y H, Heo T W, Biener M M, Nikolic R J, Tang M, Jiang H, Wang Y M. Enhanced Lithiation and Fracture Behavior of Silicon Mesoscale Pillars via Atomic Layer Coatings and Geometry Design[J]. J. Power Sources, 2014,248:447-456. doi: 10.1016/j.jpowsour.2013.09.097

    21. [21]

      Liu W, Li X F, Xiong D B, Hao Y C, Li J W, Kou H R, Yan B, Li D J, Lu S G, Koo A, Adair K, Sun X L. Significantly Improving Cycling Performance of Cathodes in Lithium Ion Batteries: The Effect of Al2O3 and LiAlO2 Coatings on LiNi0.6Co0.2Mn0.2O2[J]. Nano Energy, 2018,44:111-120. doi: 10.1016/j.nanoen.2017.11.010

    22. [22]

      Ai Q, Li D P, Guo J G, Hou G M, Sun Q, Sun Q D, Xu X Y, Zhai W, Zhang L, Feng J K, Si P C, Lou J, Ci L J. Artificial Solid Electrolyte Interphase Coating to Reduce Lithium Trapping in Silicon Anode for High Performance Lithium-Ion Batteries[J]. Adv. Mater. Interfaces, 2019,6(21)1901187. doi: 10.1002/admi.201901187

    23. [23]

      Wu Y, Li Y F, Wang L Y, Bai Y J, Zhao Z Y, Yin L W, Li H. Enhancing the Li-Ion Storage Performance of Graphite Anode Mate-rial Modified by LiAlO2[J]. Electrochim. Acta, 2017,235:463-470. doi: 10.1016/j.electacta.2017.03.129

    24. [24]

      Fang Z K, Zhu Y R, Yi T F, Xie Y. Li4Ti5O12-LiAlO2 Composite as High Performance Anode Material for Lithium-Ion Battery[J]. ACS Sustainable Chem. Eng., 2016,4(4):1994-2003. doi: 10.1021/acssuschemeng.5b01271

    25. [25]

      Huang S Y, Qin X, Miao X Y, Xu X R, Lei C R, Wei T Y. Novel Core-Dual Shell Si@MoO2@C Nanoparticles as Improved Anode Materials for Lithium-Ion Batteries[J]. ChemElectroChem, 2021,8(4):675-680. doi: 10.1002/celc.202001401

    26. [26]

      Nie P, Le Z Y, Chen G, Liu D, Liu X Y, Wu H B, Xu P C, Li X R, Liu F, Chang L M, Zhang X G, Lu Y F. Graphene Caging Silicon Par-ticles for High-Performance Lithium-Ion Batteries[J]. Small, 2018,14(25)1800635. doi: 10.1002/smll.201800635

    27. [27]

      Liu X Y, Shen C, Lu J, Liu G F, Jiang Y, Gao Y, Li W R, Zhao B, Zhang J J. Graphene Bubble Film Encapsulated Si@C Hollow Spheres as a Durable Anode Material for Lithium Storage[J]. Electrochim. Acta, 2020,361137074. doi: 10.1016/j.electacta.2020.137074

    28. [28]

      Kamali A R, Kim H K, Kim K B, Kumar V R, Fray D J. Large Scale Green Production of Ultra-High Capacity Anode Consisting of Gra-phene Encapsulated Silicon Nanoparticles[J]. J. Mater. Chem. A, 2017,5(36):19126-19135.

    29. [29]

      Dong H, Fu X L, Wang J, Wang P, Ding H, Song R, Wang S M, Li R R, Li S Y. In-Situ Construction of Porous Si@C Composites with LiCl Template to Provide Silicon Anode Expansion Buffer[J]. Carbon, 2021,173:687-695.

    30. [30]

      Wei Q, Chen Y M, Hong X J, Song C L, Yang Y, Si L P, Zhang M, Cai Y P. Novel Bread-like Nitrogen-Doped Carbon Anchored Nano-Silicon as High-Stable Anode for Lithium-Ion Batteries[J]. Appl. Surf. Sci., 2020,511145609.

    31. [31]

      Yi T F, Li Y, Fang Z K, Cui P, Luo S H, Xie Y. Improving the Cycling Stability and Rate Capability of LiMn0.5Fe0.5PO4/C Nanorod as Cathode Materials by LiAlO2 Modification[J]. J. Materiomics, 2020,6(1):33-44.

    32. [32]

      Qiu S, Lu G X, Liu J R, Lyu H L, Hu C X, Li B, Yan X R, Guo J, Guo Z H. Enhanced Electrochemical Performances of MoO2 Nanoparticles Composited with Carbon Nanotubes for Lithium-Ion Battery Anodes[J]. RSC Adv., 2015,5(106):87286-87294.

    33. [33]

      Luo Z, Xu Y, Gong C R, Zheng Y Q, Zhou Z X, Yu L M. An Ultravio-let Curable Silicon/Graphite Electrode Binder for Long-Cycling Lith-ium Ion Batteries[J]. J. Power Sources, 2021,485229348.

    34. [34]

      Lin L D, Xu X N, Chu C X, Majeed M K, Yang J. Mesoporous Amor-phous Silicon: A Simple Synthesis of a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries[J]. Angew. Chem. Int. Ed., 2016,55(45):14063-14066.

    35. [35]

      Epur R, Ramanathan M, Beck F R, Manivannan A, Kumta P N. Elec-trodeposition of Amorphous Silicon Anode for Lithium Ion Batteries[J]. Mater. Sci. Eng. B, 2012,177(14):1157-1162.

    36. [36]

      Wang Z G, Zheng B, Liu H, Zhang C, Wu F F, Luo H Y, Yu P. One-Step Synthesis of Nanoporous Silicon@Graphitized Carbon Compos-ite and Its Superior Lithium Storage Properties[J]. J. Alloy. Compd., 2021,861157955.

  • 加载中
    1. [1]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    2. [2]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    3. [3]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    4. [4]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    5. [5]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    6. [6]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    7. [7]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    8. [8]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    9. [9]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    10. [10]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    11. [11]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    12. [12]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    13. [13]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    14. [14]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    15. [15]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    16. [16]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    17. [17]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    18. [18]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    19. [19]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    20. [20]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

Metrics
  • PDF Downloads(22)
  • Abstract views(641)
  • HTML views(202)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return