Preventing CO-Releasing Systems from Forming Precipitates and Tuning CO-Releasing Rate via Ligand Exchange Reaction
- Corresponding author: Xiu-Juan JIANG, jiangxj@mail.zjxu.edu.cn Xiao-Ming LIU, xiaoming.liu@mail.zjxu.edu.cn
Citation:
Jun-Die ZHANG, Xiu-Juan JIANG, Zhi-Yin XIAO, Li-Mei CHEN, Xue-Mei WANG, Xiao-Ming LIU. Preventing CO-Releasing Systems from Forming Precipitates and Tuning CO-Releasing Rate via Ligand Exchange Reaction[J]. Chinese Journal of Inorganic Chemistry,
;2022, 38(8): 1593-1600.
doi:
10.11862/CJIC.2022.151
Marks G S, Brien J F, Nakatsu K, McLaughlin B E. Does Carbon Monoxide Have a Physiological Function?[J]. Trends Pharmacol. Sci., 1991,12:185-188. doi: 10.1016/0165-6147(91)90544-3
Mann B E, Motterlini R. CO and NO in Medicine[J]. Chem. Commun., 2007:4197-4208.
Mann B E. Carbon Monoxide: An Essential Signalling Molecule[J]. Top. Organomet. Chem., 2010,32:247-285.
Johnson T R, Mann B E, Clark J E, Foresti R, Green C J, Motterlini R. Metal Carbonyls: A New Class of Pharmaceuticals?[J]. Angew. Chem. Int. Ed., 2003,42(32):3722-3729. doi: 10.1002/anie.200301634
Gonzales M A, Mascharak P K. Photoactive Metal Carbonyl Complexes as Potential Agents for Targeted CO Delivery[J]. J. Inorg. Biochem., 2014,133:127-135. doi: 10.1016/j.jinorgbio.2013.10.015
Motterlini R. Heme Oxygenase-1-Derived Carbon Monoxide Contributes to the Suppression of Acute Hypertensive Responses In Vivo[J]. Circ. Res., 1998,83(5):568-577. doi: 10.1161/01.RES.83.5.568
Kohmoto J, Nakao A, Kaizu T, Tsung A, Ikeda A, Tomiyama K, Bilhar T R, Choi A M K, Murase N, McCurry K R. Low-Dose Carbon Monoxide Inhalation Prevents Ischemia/Reperfusion Injury of Transplanted Rat Lung Grafts[J]. Surgery., 2006,140(2):179-185. doi: 10.1016/j.surg.2006.03.004
Li Volti G, Rodella L F, Di Giacomo C, Rezzani R, Bianchi R, Borsani E, Gazzolo D, Motterlini R. Role of Carbon Monoxide and Biliverdin in Renal Ischemia/Reperfusion Injury[J]. Nephron Exp. Nephrol., 2006,104(4):E135-E139. doi: 10.1159/000094964
Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E, Green C J. Carbon Monoxide-Releasing Mole Cules-Characterization of Biochemical and Vascular Activities[J]. Circ. Res., 2002,90(2):E17-E24.
Motterlini R, Otterbein L E. The Therapeutic Potential of Carbon Monoxide[J]. Nat. Rev. Drug Discov., 2010,9(9):728-743. doi: 10.1038/nrd3228
Romao C C, Blaettler W A, Seixas J D, Bernardes G J L. Developing Drug Molecules for Therapy with Carbon Monoxide[J]. Chem. Soc. Rev., 2012,41(9):3571-3583. doi: 10.1039/c2cs15317c
Schatzschneider U. Novel Lead Structures and Activation Mechanisms for CO-Releasing Molecules (CORMs)[J]. Brit. J. Pharmacol., 2015,172(6):1638-1650. doi: 10.1111/bph.12688
Fairlamb I J S, Lynam J M. Advances in Bioorganometallic Chemistry. Amsterdam: Elsevier, 2019: 137-154
LI Y, WANG X, XIE X L, ZHANG J, TANG B. Progress in Organic Fluorescent Probes and Photocontrolled Releasers for Carbon Monoxide[J]. Acta Chim. Sinica, 2021,79(1):36-44.
Faizan M, Muhammad N, Niazi K U K, Hu Y X, Wang Y Y, Wu Y, Sun H M, Liu R X, Dong W S, Zhang W Q, Gao Z W. CO-Releasing Materials: An Emphasis on Therapeutic Implications, as Release and Subsequent Cytotoxicity are the Part of Therapy[J]. Materials, 2019,12(10)1643. doi: 10.3390/ma12101643
Ferrandiz M L, Maicas N, Garcia-Arnandis I, Terencio Mx C, Motterlini R, Devesa I, Joosten L A, van den Berg W B, Alcaraz M J. Treatment with a CO-Releasing Molecule (CORM-3) Reduces Joint Inflammation and Erosion in Murine Collagen-Induced Arthritis[J]. Ann. Rheum. Dis., 2008,67(9):1211-1217.
Zhang W Q, Atkin A J, Thatcher R J, Whitwood A C, Fairlamb I J, Lynam J M. Diversity and Design of Metal-Based Carbon MonoxideReleasing Molecules (CO -RMs) in Aqueous Systems: Revealing the Essential Trends[J]. Dalton Trans., 2009,14(22):4351-4358.
Kretschmer R, Gessner G, Gorls H, Heinemann S H, Westerhausen M. Dicarbonyl-bis(cysteamine)iron(Ⅱ): A Light Induced Carbon Monoxide Releasing Molecule Based on Iron (CORM-S1)[J]. J. Inorg. Biochem., 2011,105(1):6-9. doi: 10.1016/j.jinorgbio.2010.10.006
Crook S H, Mann B E, Meijer A J H M, Adams H, Sawle P, Scapens D, Motterlini R. [Mn(CO)4{S2CNMe(CH2CO2H)}], A New Water-Soluble CO-Releasing Molecule[J]. Dalton Trans., 2011,40(16):4230-235. doi: 10.1039/c1dt10125k
Gullotta F, Di Masi A, Ascenzi P. Carbon Monoxide: An Unusual Drug[J]. Iubmb Life, 2012,64(5):378-386. doi: 10.1002/iub.1015
Nobre L S, Seixas J D, Romao C C, Saraiva L M. Antimicrobial Action of Carbon Monoxide-Releasing Compounds.Antimicrob[J]. Agents Chemother., 2007,51(12):4303-4307. doi: 10.1128/AAC.00802-07
Bannenberg G L, Vieira H L A. Therapeutic Applications of the Gaseous Mediators Carbon Monoxide and Hydrogen Sulfide[J]. Expert Opin. Ther. Pat., 2009,19(5):663-682. doi: 10.1517/13543770902858824
Zobi F, Blacque O, Jacobs R A, Schaub M C, Bogdanova A Y. 17 e- Rhenium Dicarbonyl CO-Releasing Molecules on a Cobalamin Scaffold for Biological Application[J]. Dalton Trans., 2011,41(2):370-378.
Sitnikov N S, Malysheva Y B, Fedorov A Y, Schmalz H G. Design and Synthesis of New Protease-Triggered CO-Releasing Peptide-Metal-Complex Conjugates[J]. Eur. J. Org. Chem., 2019(40):6830-6837.
Kunz P C, Meyer H, Barthel J, Sollazzo S, Schmidt A M, Janiak C. Metal Carbonyls Supported on Iron Oxide Nanoparticles to Trigger the CO-Gasotransmitter Release by Magnetic Heating[J]. Chem. Commun., 2013,49(43):4896-4898. doi: 10.1039/c3cc41411f
Heinemann S H, Hoshi T, Westerhausen M, Schiller A. Carbon Monoxide-Physiology, Detection and Controlled Release[J]. Chem. Commun., 2014,50(28):3644-3660. doi: 10.1039/C3CC49196J
Ling K, Men F, Wang W C, Zhou Y Q, Zhang H W, Ye D W. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs)[J]. J. Med. Chem., 2018,61(7):2611-2635. doi: 10.1021/acs.jmedchem.6b01153
Hasegawa U, Van der Vlies A J, Simeoni E, Wandrey C, Hubbell J A. Carbon Monoxide-Releasing Micelles for Immunotherapy[J]. J. Am. Chem. Soc., 2010,132(51):18273-18280. doi: 10.1021/ja1075025
Long L, Jiang X J, Wang X, Xiao Z Y, Liu X M. Water -Soluble Diiron Hexacarbonyl Complex as a CO-RM: Controllable CO-Releasing, Releasing Mechanism and Biocompatibility[J]. Dalton Trans., 2013,42:15663-15669. doi: 10.1039/c3dt51281a
Chen L M, Jiang X U, Wang X L, Long L, Zhang J Y, Liu X M. A Kinetic Analysis of CO Release from a Diiron Hexacarbonyl Complex Promoted by Amino Acids[J]. New J. Chem., 2014,38(12):5957-5963. doi: 10.1039/C4NJ00661E
Jiang X J, Long L, Wang H L, Chen L M, Liu X M. Diiron Hexacarbonyl Complexes as Potential CO-RMs: CO -Releasing Initiated by a Substitution Reaction with Cysteamine and Structural Correlation to the Bridging Linkage[J]. Dalton Trans., 2014,43(26):9968-9975. doi: 10.1039/C3DT53620C
Jiang X J, Chen L M, Wang X, Long L, Xiao Z Y, Liu X M. Photoinduced Carbon Monoxide Release from Half-Sandwich Iron(Ⅱ) Carbonyl Complexes by Visible Irradiation: Kinetic Analysis and Mechanistic Investigation[J]. Chem. Eur. J., 2015,21(37):13065-13072. doi: 10.1002/chem.201501348
Guo Z M, Jin J, Xiao Z Y, Chen N W, Jiang X J, Liu X M, Wu L F, He Y, Zhang S H. Four Iron Carbonyl Complexes Containing both Pyridyl and Halide Ligands: Their Synthesis, Characterization, Stability, and Anticancer Activity[J]. Appl. Organomet. Chem., 2021,35(1)e6045.
Yang X Q, Jin J, Guo Z M, Xiao Z Y, Chen N W, Jiang X J, He Y, Liu X M. The Monoiron Anion fac -Fe(CO)3I3- and Its Organic Aminium Salts: Their Preparation, CO-Release, and Cytotoxicity[J]. New J. Chem., 2020,44(25):10300-10308. doi: 10.1039/D0NJ01182G
Xiao Z Y, Jiang R, Jin J, Yang X Q, Xu B Y, Liu X M, He Y B, He Y. Diiron(Ⅱ) Pentacarbonyl Complexes as CO-Releasing Molecules: Their Synthesis, Characterization, CO-Releasing Behaviour and Biocompatibility[J]. Dalton Trans., 2019,48(2):468-477. doi: 10.1039/C8DT03982H
Pierri A E, Huang P J, Garcia J V, Stanfill J G, Chui M, Wu G, Zheng N, Ford P C. A PhotoCORM Nanocarrier for CO Release Using NIR Light[J]. Chem. Commun., 2015,51(11):2072-2075.
Ou J, Zheng W H, Xiao Z Y, Yan Y P, Jiang X J, Dou Y, Jiang R, Liu X M. Core-Shell Materials Bearing Iron(Ⅱ) Carbonyl Units and Their CO-Release via an Upconversion Process[J]. J. Mater. Chem. B, 2017,5(41):8161-8168. doi: 10.1039/C7TB01434A
Scapens D, Adams H, Johnson T R, Mann B E, Sawle P, Aqil R, Perrior T, Motterlini R. [(η-C5H 4R)Fe(CO) 2X], X=Cl, Br, I, NO3, CO2Me and[(η-C5 H 4R)Fe(CO) 3]+, R= (CH2)nCO2Me (n=0-2), and CO2CH 2CH2OH: A New Group of CO-Releasing Molecules[J]. Dalton Trans., 2007,43:4962-4973.
Holleman A F, Wiberg E. Inorganic Chemistry. San Diego: Academic Press, 2001: 136-140
Jumei Zhang , Ziheng Zhang , Gang Li , Hongjin Qiao , Hua Xie , Ling Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Xiangjun Zhang , Xiaodi Yang , Yan Wang , Zhongping Xu , Sisi Yi , Tao Guo , Yue Liao , Xiyu Tang , Jianxiang Zhang , Ruibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385
Guanyang Zeng , Xingqiang Liu , Liangqiao Wu , Zijie Meng , Debin Zeng , Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Lili Zhang , Hui Gao , Gong Zhang , Yuning Dong , Kai Huang , Zifan Pang , Tuo Wang , Chunlei Pei , Peng Zhang , Jinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Lu Dai , Yuxin Ren , Shuang Li , Meidi Wang , Chentao Hu , Ya-Pan Wu , Guangtong Hai , Dong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774
Xinlong Han , Huiying Zeng , Chao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817
Long Jin , Jian Han , Dongmei Fang , Min Wang , Jian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212
Yanjie Li , Chaoqun Qu , Siqi Meng , Jiaqi Hu , Ze Gao , Hongji Xu , Rui Gao , Ming Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872
Junchuan Sun , Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330
c1=0.011 5 mol·L-1, cligand=cEDTA=0.034 5 mol·L-1 in DMSO/H2O mixture (4∶1, V/V) at 37 ℃ under open atmosphere; The absorbance at 2 032 cm-1 was taken in the analysis
c1=0.011 5 mol·L-1, cligand=cEDTA=0.034 5 mol·L-1 in physiological saline (D2O) at 37 ℃ under open atmosphere; The absorbance at 2 032 cm-1 was taken in the analysis