Citation: Li-Hua ZHU, Zhi-Yin XIAO, Wei ZHONG, Ya-Bing HE. Effect of Different Spacers in Ionic Polymers on Catalytic CO2 Cycloaddition Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1299-1308. doi: 10.11862/CJIC.2022.144 shu

Effect of Different Spacers in Ionic Polymers on Catalytic CO2 Cycloaddition Reaction

Figures(12)

  • It is still a big challenge to efficiently catalyze cycloaddition of CO2 and epoxide under the mild condition of atmospheric pressure and low temperature. Herein, a family of novel ionic polymers IP1-IP3 has been facilely synthesized via nucleophilic substitution reaction between the precursors of N-trimethylsilyl imidazole and dihalides with different functional groups to form repeating C-N bonds. IP1-IP3 have been fully characterized by FT-IR, scanning electron microscope, X-ray energy dispersive spectrum mapping, specific surface area and porosity analyses, and X-ray photoelectron spectroscopy. The ionic polymers IP1-IP3 efficiently catalyzed the cycloaddition of CO2 and epoxides to afford cyclic carbonates at pCO2=101 kPa, but their catalytic activities varied with the spacers with different functional groups. Among the three ionic polymers, IP3 with a phenolic hydroxyl as the spacer showed the best catalytic performance. Under the optimized conditions of solvent-free, 80℃, 12 h, and pCO2=101 kPa, IP3 could quantitatively convert epichlorohydrin into its corresponding cyclic carbonate and showed broad substrate scope. Furthermore, IP3 could be recycled and reused 10 times without an obvious decrease in catalytic activity (Yield>92%), which indicates excellent stability.
  • 加载中
    1. [1]

      Büttner H, Longwitz L, Steinbauer J, Wulf C, Werner T. Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2[J]. Top. Curr. Chem., 2017,375(3)50. doi: 10.1007/s41061-017-0136-5

    2. [2]

      Li Z J, Sun J F, Xu Q Q, Yin J Z. Homogeneous and Heterogeneous Ionic Liquid System: Promising "Ideal Catalysts" for the Fixation of CO2 into Cyclic Carbonates[J]. ChemCatChem, 2021,13(8):1848-1866. doi: 10.1002/cctc.202001572

    3. [3]

      Kamphuis A J, Picchioni F, Pescarmona P P. CO2-Fixation into Cyclic and Polymeric Carbonates: Principles and Applications[J]. Green Chem., 2019,21(3):406-448. doi: 10.1039/C8GC03086C

    4. [4]

      Kiatkittipong K, Shukri M, Kiatkittipong W, Lim J W, Show P L, Lam M K, Assabumrungrat S. Green Pathway in Utilizing CO2 via Cycloaddition Reaction with Epoxide-A Mini Review[J]. Processes, 2020,8(5)548. doi: 10.3390/pr8050548

    5. [5]

      Bhanja P, Modak A, Bhaumik A. Supported Porous Nanomaterials as Efficient Heterogeneous Catalysts for CO2 Fixation Reactions[J]. Chem. Eur. J., 2018,24(29):7278-7297. doi: 10.1002/chem.201800075

    6. [6]

      Luo R C, Chen M, Liu X Y, Xu W, Li J Y, Liu B Y, Fang Y X. Recent Advances in CO2 Capture and Simultaneous Conversion into Cyclic Carbonates over Porous Organic Polymers Having Accessible Metal Sites[J]. J. Mater. Chem. A, 2020,8(36):18408-18424. doi: 10.1039/D0TA06142E

    7. [7]

      Luo R C, Liu X Y, Chen M, Liu B Y, Fang Y X. Recent Advances on Imidazolium-Functionalized Organic Cationic Polymers for CO2 Adsorption and Simultaneous Conversion into Cyclic Carbonates[J]. ChemSusChem, 2020,13(16):3945-3966. doi: 10.1002/cssc.202001079

    8. [8]

      Xu D, Guo J N, Yan F. Porous Ionic Polymers: Design, Synthesis, and Applications[J]. Prog. Polym. Sci., 2018,79:121-143. doi: 10.1016/j.progpolymsci.2017.11.005

    9. [9]

      Barrulas R V, Zanatta M, Casimiro T, Corvo M C. Advanced Porous Materials from Poly (ionic liquid) s: Challenges, Applications and Opportunities[J]. Chem. Eng. J., 2021,411128528. doi: 10.1016/j.cej.2021.128528

    10. [10]

      Guo F, Zhang X L. Metal-Organic Frameworks for the Energy-Related Conversion of CO2 into Cyclic Carbonates[J]. Dalton Trans., 2020,49(29):9935-9947. doi: 10.1039/D0DT01516D

    11. [11]

      Liang J, Huang Y B, Cao R. Metal-Organic Frameworks and Porous Organic Polymers for Sustainable Fixation of Carbon Dioxide into Cyclic Carbonates[J]. Coord. Chem. Rev., 2019,378:32-65. doi: 10.1016/j.ccr.2017.11.013

    12. [12]

      Maina J W, Pozo-Gonzalo C, Kong L X, Schutz J, Hill M, Dumee L F. Metal Organic Framework Based Catalysts for CO2 Conversion[J]. Mater. Horiz., 2017,4(3):345-361. doi: 10.1039/C6MH00484A

    13. [13]

      Pal T K, De D, Bharadwaj P K. Metal-Organic Frameworks for the Chemical Fixation of CO2 into Cyclic Carbonates[J]. Coord. Chem. Rev., 2020,408213173. doi: 10.1016/j.ccr.2019.213173

    14. [14]

      Marciniak A A, Lamb K J, Ozorio L P, Mota C J A, North M. Heterogeneous Catalysts for Cyclic Carbonate Synthesis from Carbon Dioxide and Epoxides[J]. Curr. Opin. Green Sustainable Chem., 2020,26100365. doi: 10.1016/j.cogsc.2020.100365

    15. [15]

      Calabrese C, Giacalone F, Aprile C. Hybrid Catalysts for CO2 Conversion into Cyclic Carbonates[J]. Catalysts, 2019,9(4)325. doi: 10.3390/catal9040325

    16. [16]

      Yuan J Y, Mecerreyes D, Antonietti M. Poly (ionic liquid) s: An Update[J]. Prog. Polym. Sci., 2013,38(7):1009-1036. doi: 10.1016/j.progpolymsci.2013.04.002

    17. [17]

      Zhang S G, Dokko K, Watanabe M. Porous Ionic Liquids: Synthesis and Application[J]. Chem. Sci., 2015,6(7):3684-3691. doi: 10.1039/C5SC01374G

    18. [18]

      Bedel S, Ulrich G, Picard C. Alternative Approach to the Free Radical Bromination of Oligopyridine Benzylic-Methyl Group[J]. Tetrahedron Lett., 2002,43(9):1697-1700. doi: 10.1016/S0040-4039(02)00127-2

    19. [19]

      Carlsson H, Haukka M, Bousseksou A, Latour J M, Nordlander E. Nickel Complexes of Carboxylate-Containing Polydentate Ligands as Models for the Active Site of Urease[J]. Inorg. Chem., 2004,43(26)82528262.

    20. [20]

      Zhong W, Bobbink F D, Fei Z F, Dyson P J. Polyimidazolium Salts: Robust Catalysts for the Cycloaddition of Carbon Dioxide into Carbonates in Solvent-Free Conditions[J]. ChemSusChem, 2017,10(13):2728-2735. doi: 10.1002/cssc.201700570

    21. [21]

      Cai K X, Liu P, Chen P, Yang C L, Liu F, Xie T, Zhao T X. Imidazoliumand Triazine-Based Ionic Polymers as Recyclable Catalysts for Efficient Fixation of CO2 into Cyclic Carbonates[J]. J. CO2 Util., 2021,51101658. doi: 10.1016/j.jcou.2021.101658

    22. [22]

      Cao J J, Shan W J, Wang Q, Ling X C, Li G Q, Lyu Y, Zhou Y N, Wang J. Ordered Porous Poly (ionic liquid) Crystallines: Spacing Confined Ionic Surface Enhancing Selective CO2 Capture and Fixation[J]. ACS Appl. Mater. Interfaces, 2019,11(6):6031-6041. doi: 10.1021/acsami.8b19420

    23. [23]

      Zhou Y, Zhang W L, Ma L, Zhou Y, Wang J. Amino Acid Anion Paired Mesoporous Poly (ionic liquids) as Metal-/Halogen-Free Heterogeneous Catalysts for Carbon Dioxide Fixation[J]. ACS Sustainable Chem. Eng., 2019,7(10):9387-9398. doi: 10.1021/acssuschemeng.9b00591

    24. [24]

      Tang Y P, Yuwen S, Chung T S, Weber M, Staudt C, Maletzko C. Synthesis of Hyperbranched Polymers towards Efficient Boron Reclamation via a Hybrid Ultrafiltration Process[J]. J. Membr. Sci., 2016,510:112-121. doi: 10.1016/j.memsci.2016.03.024

    25. [25]

      Zhang Y D, Chen G J, Wu L, Liu K, Zhong H, Long Z Y, Tong M M, Yang Z Z, Dai S. Two-In-One: Construction of Hydroxyl and Imidazolium-Bifunctionalized Ionic Networks in One-Pot toward Synergistic Catalytic CO2 Fixation[J]. Chem. Commun., 2020,56(22):3309-3312. doi: 10.1039/C9CC09643D

    26. [26]

      Chen G J, Zhang Y D, Xu J Y, Liu X Q, Liu K, Tong M M, Long Z Y. Imidazolium-Based Ionic Porous Hybrid Polymers with POSSDerived Silanols for Efficient Heterogeneous Catalytic CO2 Conversion under Mild Conditions[J]. Chem. Eng. J., 2020,381122765. doi: 10.1016/j.cej.2019.122765

    27. [27]

      Gou H B, Ma X F, Su Q, Liu L, Ying T, Qian W, Dong L, Cheng W G. Hydrogen Bond Donor Functionalized Poly (ionic liquid) s for Efficient Synergistic Conversion of CO2 to Cyclic Carbonates[J]. Phys. Chem. Chem. Phys., 2021,23(3):2005-2014. doi: 10.1039/D0CP06041K

    28. [28]

      Jiang Y C, Wang Z J, Xu P, Sun J M. Dicationic Ionic Liquid@MIL101 for the Cycloaddition of CO2 and Epoxides under Cocatalyst-Free Conditions[J]. Cryst. Growth Des., 2021,21(7):3689-3698. doi: 10.1021/acs.cgd.0c01666

    29. [29]

      Bahadori M, Tangestaninejad S, Bertmer M, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F. TaskSpecific Ionic Liquid Functionalized-MIL-101(Cr) as a Heterogeneous and Efficient Catalyst for the Cycloaddition of CO2 with Epoxides under Solvent Free Conditions[J]. ACS Sustainable Chem. Eng., 2019,7(4):3962-3973. doi: 10.1021/acssuschemeng.8b05226

  • 加载中
    1. [1]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    5. [5]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    18. [18]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    19. [19]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    20. [20]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

Metrics
  • PDF Downloads(1)
  • Abstract views(795)
  • HTML views(145)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return