Citation: Zhong-Yan LI, Hai-Bo QIN, Hong-Yu ZHU, Xu FAN, Lin YUAN. Three Salicylaldehyde Schiff Base Fluorescent Probes: Synthesis and Recognition of Zn2+[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1291-1298. doi: 10.11862/CJIC.2022.137 shu

Three Salicylaldehyde Schiff Base Fluorescent Probes: Synthesis and Recognition of Zn2+

  • Corresponding author: Lin YUAN, tcyl431102@163.com
  • Received Date: 12 December 2021
    Revised Date: 24 April 2022

Figures(11)

  • Three novel Schiff-base fluorescent probes, 2-((2-hydroxybenzylidene)amino)-2-(hydroxymethyl)propane- 1, 3-diol (L1), 2-((5-chloro-2-hydro-xybenzylidene)amino)-2-(hydroxymethyl)-propane-1, 3-diol (L2), and 2-((2-hydroxy-4-methoxy-benzylidene)amino)-2-(hydroxymethyl)propane-1, 3-diol (L3), were designed and synthesized, and characterized by 1H NMR, 13C NMR, elemental analysis, and HRMS. The results of the spectral analysis showed that probe L2 was more selective and sensitive to Zn2+ than probes L1 and L3. The detection limit of L2 was found to be 11.96 nmol·L-1, which was far lower than the limit value of Zn2+ in drinking water, 1.0 mg·L-1 (about 15 μmol· L-1), stipulated in the national standard GB5749-2006. There was a good linear relationship between the fluorescence intensity of probe L2 and the concentration of Zn2+ in a range of 0 to 10 μmol·L-1. Meanwhile, the singlecrystal structure of complex[Zn(C11H13ClNO4)2] (L2-Zn2+) and the Job's plot revealed a 2:1 L2-Zn2+ identification. Moreover, probe L2 could detect Zn2+ in actual water samples.
  • 加载中
    1. [1]

      Chen Y C, Bai Y, Han Z, He W J, Guo Z J. Photoluminescence Imaging of Zn2+ in Living Systems[J]. Chem. Soc. Rev., 2015,44:4517-4546. doi: 10.1039/C5CS00005J

    2. [2]

      Bouain N, Shahzad Z, Rouached A, Khan G A, Berthomieu P, Abdelly C, Poirier Y, Rouached H. Phosphate and Zinc Transport and Signalling in Plants: Toward a Better Understanding of Their Homeostasis Interaction[J]. J. Exp. Bot., 2014,65:5725-5741. doi: 10.1093/jxb/eru314

    3. [3]

      Pathak R K, Hinge V K, Rai A, Panda D, Rao C P. Imino-PhenolicPyridyl Conjugates of Calix [4] arene (L1 and L2) as Primary Fluorescence Switch-On Sensors for Zn2+ in Solution and in Hela Cells and the Recognition of Pyrophosphate and ATP by[ZnL2].[J]. Inorg. Chem., 2012,51:4994-5005. doi: 10.1021/ic202426v

    4. [4]

      WAN D D, SU G Y, XU Z H, ZHANG Y M, WU Z Y, HE W J, GUO Z J. Ratiometric Sensing of Zn2+ by 2-(Pyridin-2'-yl)-1H-benzo[d]imidazole[J]. Chinese J. Inorg. Chem., 2008,24(8):1253-1260.

    5. [5]

      Li K, Tong A. A New Fluorescent Chemosensor for Zn2+ with Facile Synthesis: "Turn-On" Response in Water at Neutral pH and Its Application for Live Cell Imaging[J]. Sens. Actuator B-Chem., 2013,184:248-253. doi: 10.1016/j.snb.2013.04.083

    6. [6]

      Vallee B L, Falchuk K H. The Biochemical Basis of Zinc Physiology[J]. Physiol. Rev., 1993,73:79-118. doi: 10.1152/physrev.1993.73.1.79

    7. [7]

      Frederickson C J, Koh J Y, Bush A I. The Neurobiology of Zinc in Health and Disease[J]. Nat. Rev. Neurosci., 2005,6:449-462. doi: 10.1038/nrn1671

    8. [8]

      Lodeiro C, Pina F. Luminescent and Chromogenic Molecular Probes Based on Polyamines and Related Compounds[J]. Coord. Chem. Rev., 2009,253:1353-1383. doi: 10.1016/j.ccr.2008.09.008

    9. [9]

      Wang L, Li Y F, Li G P, Xie Z K, Ye B X. Electrochemical Characters of Hymecromone at the Graphene Modified Electrode and Its Analytical Application[J]. Anal. Methods, 2015,7:3000-3005. doi: 10.1039/C4AY03051F

    10. [10]

      Sarkar D, Pramanik A, Biswas S, Karmakar P, Kumar Mondal T. Al3+ Selective Coumarin Based Reversible Chemosensor: Application in Living Cell Imaging and as Integrated Molecular Logic Gate[J]. RSC Adv., 2014,4:30666-30672. doi: 10.1039/C4RA04318A

    11. [11]

      HE Q F, WU Y H, CAI Z J, XIE W. Synthesis of Fluorescent Crosslinked Stabilized Polymeric Micelles Based on Salicylidene Schiff Base/Zn2+ Complexes and Sensor for Cu2+ Detection[J]. Chinese Journal of Applied Chemistry, 2016,33(6):701-709.  

    12. [12]

      Savory J, Ghribi O, Forbes M S, Herman M M. Aluminium and Neuronal Cell Injury: Inter-Relationships between Neurofilamentous Arrays and Apoptosis[J]. J. Inorg. Biochem., 2001,87:15-19. doi: 10.1016/S0162-0134(01)00309-9

    13. [13]

      Walton J R. Aluminum in Hippocampal Neurons from Humans with Alzheimer's Disease[J]. Neurotoxicology, 2006,27:385-394. doi: 10.1016/j.neuro.2005.11.007

    14. [14]

      CHEN B, WANG S J, SONG Z K, GUO Y. Naphthol-Based Shiff Base as a Selective Fluorescent Probe for Detecting Zn2+ in Living Cells[J]. Chinese J. Inorg. Chem., 2017,33(10):1722-1730.  

    15. [15]

      HU B, ZHANG Y, ZHU L, LUO X B, ZHOU D, XIE Y, HUANG W. A Pyridine Triazole Modified Coumarin Fluorescent Sensor for Selective Detection of Cu2+ Ions[J]. Chinese J. Inorg. Chem., 2020,36(7):1375-1382.  

    16. [16]

      WU H M, GUO Y, CAO J F, CHEN Q Q. A Highly Sensitive Fluorescent Probe for Detection of Magnesium Ion Based on Novel Schiff's Base[J]. Chin. J. Anal. Chem., 2018,46(3):379-385.  

    17. [17]

      DONG Z M, WANG J N, ZHANG Q, WANG Y. A Novel Fluorescent Probe Based on Schiff Base for Dual Sensing of Zn2+ and CN-[J]. Chin. J. Anal. Chem., 2018,46(3):354-363.  

    18. [18]

      Xie H F, Yu C J, Huang Y L, Xu H, Zhang Q L, Sun X H, Feng X, Redshaw C. A Turn-Off Fluorescent Probe for the Detection of Cu2+ Based on a Tetraphenylethylene-Functionalized Salicylaldehyde Schiff-Base[J]. Mater. Chem. Front., 2020,4:1500-1506.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    4. [4]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    7. [7]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    10. [10]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    19. [19]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(9)
  • Abstract views(1196)
  • HTML views(242)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return