Citation: Qi XIAO, Guang-Xian LIU, Jian-Dan CHEN, Zheng-Zhi YIN, Chun-Chuan GU, Hong-Ying LIU. Non-enzyme Glucose Biosensor Based on Bimetallic Pt-Au Nanoparticles Decorated Acupuncture Needle[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1159-1170. doi: 10.11862/CJIC.2022.119 shu

Non-enzyme Glucose Biosensor Based on Bimetallic Pt-Au Nanoparticles Decorated Acupuncture Needle

Figures(9)

  • An electrochemical biosensor for non-enzyme glucose detection was constructed based on the synergistic action of gold (Au) nanoparticles and platinum (Pt) nanoparticles on the surface of a stainless steel acupuncture needle (AN), which was achieved by respectively electrodepositing. The functional interface (Pt/Au/AN) was characterized by a scanning electron microscope, showing that cabbage-like nanomaterials were uniformly and densely distributed on the surface of AN. Pt/Au/AN electrode also possessed outstanding electrochemical characteristics, which were studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Significantly, Pt/Au/AN electrode exhibited remarkably electrocatalytic activity toward glucose oxidation compared with Au/AN or Pt/AN electrode. The results indicated that the contact interface of bimetallic Pt/Au was the vital electrocatalytic site for glucose oxidation. A further study proved that the contact interface exhibited intrinsic features and distinct selectivity for sensing glucose. The prepared sensor showed a wide linear range from 0.1 to 35 mmol·L-1, and the detection limit of glucose was 0.076 3 mmol·L-1. The sensor showed great stability, excellent selectivity, and miniaturization. Furthermore, the sensor was successfully used for the detection of glucose in human serum.
  • 加载中
    1. [1]

      Adeniyi O, Nwahara N, Mwanza D, Nyokong T, Mashazi P. Nanohybrid Electrocatalyst Based on Cobalt Phthalocyanine-Carbon NanotubeReduced Graphene Oxide for Ultrasensitive Detection of Glucose in Human Saliva[J]. Sens. Actuators B, 2021,348130723. doi: 10.1016/j.snb.2021.130723

    2. [2]

      Adeel M, Asif K, Rahman M M, Daniele S, Canzonier V, Rizzolio F. Glucose Detection Devices and Methods Based on Metal-Organic Frameworks and Related Materials[J]. Adv. Funct. Mater., 2021,31(52)2106023. doi: 10.1002/adfm.202106023

    3. [3]

      Gupta P, Gupta V K, Huseinov A, Rahm C E, Gazica K, Alvarez N T. Highly Sensitive Non-enzymatic Glucose Sensor Based on Carbon Nanotube Microelectrode Set[J]. Sens. Actuators B, 2021,348130688. doi: 10.1016/j.snb.2021.130688

    4. [4]

      Shim K, Lee W, Park M, Shahabuddin M, Yamauchi Y, Hossain M S A, Shim Y, Kim J H. Au Decorated Core-Shell Structured Au@Pt for the Glucose Oxidation Reaction[J]. Sens. Actuators B, 2019,278:88-96. doi: 10.1016/j.snb.2018.09.048

    5. [5]

      Aschner P, Karuranga S, James S, Simmons D, Basit A, Shaw J E, Wild S H, Ogurtsova K, Saeedi P. The International Diabetes Federation's Guide for Diabetes Epidemiological Studies[J]. Diabetes Res. Clin. Pract., 2021,172108630. doi: 10.1016/j.diabres.2020.108630

    6. [6]

      Tonnies T, Rathman W, Hoyer A, Brinks R, Kuss O. Quantifying the Underestimation of Projected Global Diabetes Prevalence by the International Diabetes Federation (IDF) Diabetes Atlas[J]. BMJ Open Diabetes Res. Care, 2021,9e002122. doi: 10.1136/bmjdrc-2021-002122

    7. [7]

      Ye N R, Huang S M, Yang H S, Wu T, Tong L J, Zhu F, Chen G S, Ouyang G F. Hydrogen-Bonded Biohybrid Framework-Derived Highly Specific Nanozymes for Biomarker Sensing[J]. Anal. Chem., 2021,93(41):13981-13989. doi: 10.1021/acs.analchem.1c03381

    8. [8]

      Kang J W, Park Y S, Chang H, Lee W, Singh S P, Choi W, Galindo L H, Dasari R R, Nam S H, Park J, So P T C. Direct Observation of Glucose Fingerprint Using In Vivo Raman Spectroscopy[J]. Sci. Adv., 2020,6(4)eaay5206. doi: 10.1126/sciadv.aay5206

    9. [9]

      Jiang S S, Zhang Y F, Yang Y C, Huang Y, Ma G C, Lou Y X, Huang P, Lin J. Glucose Oxidase-Instructed Fluorescence Amplification Strategy for Intracellular Glucose Detection[J]. ACS Appl. Mater. Interfaces, 2019,11(11):10554-10558. doi: 10.1021/acsami.9b00010

    10. [10]

      Han Q Z, Wang H Y, Wu D, Wei Q. Preparation of PbS NPs/RGO/NiO Nanosheet Arrays Heterostructure: Function-Switchable Self-Powered Photoelectrochemical Biosensor for H2O2 and Glucose Monitoring[J]. Biosens. Bioelectron., 2021,173(1)112803.

    11. [11]

      Lin H, Li S X, Xu C X, Pang M L, Wang S L. Simultaneous Determination of Galactose, Glucose, Lactose and Galactooligosaccharides in Galactooligosaccharides Raw Materials by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection[J]. Food Chem., 2018,263:29-36. doi: 10.1016/j.foodchem.2018.04.092

    12. [12]

      Katseli V, Economou A, Kokkinos C. Smartphone-Addressable 3D-Printed Electrochemical Ring for Nonenzymatic Self -Monitoring of Glucose in Human Sweat[J]. Anal. Chem., 2021,93(7):3331-3336. doi: 10.1021/acs.analchem.0c05057

    13. [13]

      Kumar P, Suneesh P V, Nair B K G, Babu T S. Complete Fabrication of a Nonenzymatic Glucose Sensor with a Wide Linear Range for the Direct Testing of Blood Samples[J]. Electrochim. Acta, 2021,395139145. doi: 10.1016/j.electacta.2021.139145

    14. [14]

      Wei M, Qiao Y X, Zhao H T, Liang J, Li T S, Luo Y L, Lu S Y, Shi X F, Lu W B, Sun X P. Electrochemical Non-enzymatic Glucose Sensors: Recent Progress and Perspectives[J]. Chem. Commun., 2020,56(93):14553-14569. doi: 10.1039/D0CC05650B

    15. [15]

      Fang L, Cai Y, Huang B B, Cao Q P, Zhu Q, Tu T T, Ye X S, Liang B. A Highly Sensitive Nonenzymatic Glucose Sensor Based on Cu/Cu 2O Composite Nanoparticles Decorated Single Carbon Fiber[J]. J. Electroanal. Chem., 2021,880114888. doi: 10.1016/j.jelechem.2020.114888

    16. [16]

      Lin L L, Weng S H, Zheng Y J, Liu X Y, Ying S M, Chen F, You D H. Bimetallic PtAu Alloy Nanomaterials for Nonenzymatic Selective Glucose Sensing at Low Potential[J]. J. Electroanal. Chem., 2020,865114147. doi: 10.1016/j.jelechem.2020.114147

    17. [17]

      Wang S Z, Zheng M, Zhang X, Zhou M P, Zhou Q Q, Su Y, Zheng M, Yuan G T, Wang Z S. Flowerlike CuO/Au Nanoparticle Heterostructures for Nonenzymatic Glucose Detection[J]. ACS Appl. Nano Mater., 2021,4:5808-5815. doi: 10.1021/acsanm.1c00607

    18. [18]

      Torrinha A, Morais S. Electrochemical (Bio) Sensors Based on Carbon Cloth and Carbon Paper: An Overview[J]. TrAC Trends Anal. Chem., 2021,142116324. doi: 10.1016/j.trac.2021.116324

    19. [19]

      Gorle D B, Ponnada S, Kiai M S, Nair K K, Nowduri A, Swart H C, Ang E H, Nanda K K. Review on Recent Progress in Metal-Organic Framework-Based Materials for Fabricating Electrochemical Glucose Sensors[J]. J. Mater. Chem. B, 2021,9(38):7927-7954. doi: 10.1039/D1TB01403J

    20. [20]

      Wu M Y, Zhu J W, Ren Y F, Yang N, Hong Y, Wang W J, Huang W, Si W L, Dong X C. NH2-GQDs-Doped Nickel-Cobalt Oxide Deposited on Carbon Cloth for Nonenzymatic Detection of Glucose[J]. Adv. Mater. Interfaces, 2020,7(1)1901578. doi: 10.1002/admi.201901578

    21. [21]

      Sehit E, Drzazgowska J, Buchenau D, Yesildag C, Lensen M, Altintas Z. Ultrasensitive Nonenzymatic Electrochemical Glucose Sensor Based on Gold Nanoparticles and Molecularly Imprinted Polymers[J]. Biosens. Bioelectron., 2020,165112432. doi: 10.1016/j.bios.2020.112432

    22. [22]

      Zhang C M, Zhang R Z, Gao X H, Cheng C F, Hou L, Li X K, Chen W. Small Naked Pt Nanoparticles Confined in Mesoporous Shell of Hollow Carbon Spheres for High-Performance Nonenzymatic Sensing of H2O2 and Glucose[J]. ACS Omega, 2018,3:96-105. doi: 10.1021/acsomega.7b01549

    23. [23]

      Guo M Q, Hong H S, Tang X N, Fang H D, Xu X H. Ultrasonic Electrodeposition of Platinum Nanoflowers and Their Application in Nonenzymatic Glucose Sensors[J]. Electrochim. Acta, 2012,63:1-8. doi: 10.1016/j.electacta.2011.11.114

    24. [24]

      Nantaaphol S, Watanabe T, Nomura N, Siangproh W, Chailapakul O, Einaga Y. Bimetallic Pt-Au Nanocatalysts Electrochemically Deposited on Boron-Doped Diamond Electrodes for Nonenzymatic Glucose Detection[J]. Biosens. Bioelectron., 2017,98:76-82. doi: 10.1016/j.bios.2017.06.034

    25. [25]

      Chen J X, Ma Q, Li M H, Chao D Y, Huang L, Wu W W, Fang Y X, Dong S J. Glucose-Oxidase like Catalytic Mechanism of Noble Metal Nanozymes[J]. Nat. Commun., 2021,12(1)3375. doi: 10.1038/s41467-021-23737-1

    26. [26]

      Zhu Q, Liang B, Liang Y T, Ji L, Cai Y, Wu K, Tu T T, Ren H X, Huang B B, Wei J W, Fang L, Liang X, Ye X S. 3D Bimetallic Au/Pt Nanoflowers Decorated Needle-Type Microelectrode for Direct In Situ Monitoring of ATP Secreted from Living Cells[J]. Biosens. Bioelectron., 2020,153112019. doi: 10.1016/j.bios.2020.112019

    27. [27]

      Li Y, Han H T, Pan D W, Zhang P Q. Fabrication of a Micro-needle Sensor Based on Copper Microspheres and Polyaniline Film for Nitrate Determination in Coastal River Waters[J]. J. Electrochem. Soc., 2019,166(12):B1038-B1043. doi: 10.1149/2.1281912jes

    28. [28]

      Han H T, Pan D W, Li Y, Wang J, Wang C C. Stripping Voltammetric Determination of Lead in Coastal Waters with a Functional Microneedle Electrode[J]. Front. Mar. Sci., 2020,7:1-9. doi: 10.3389/fmars.2020.00001

    29. [29]

      Niu X L, Wen Z R, Li X B, Zhao W S, Li X Y, Huang Y Q, Li Q T, Li G J, Sun W. Fabrication of Graphene and Gold Nanoparticle Modified Acupuncture Needle Electrode and Its Application in Rutin Analysis[J]. Sens. Actuators B, 2018,255:471-477. doi: 10.1016/j.snb.2017.07.085

    30. [30]

      Jia H L, Zhao J W, Qin L R, Zhao M, Liu G. The Fabrication of an Ni6MnO8 Nanoflake-Modified Acupuncture Needle Electrode for Highly Sensitive Ascorbic Acid Detection[J]. RSC Adv., 2019,9:26843-26849. doi: 10.1039/C9RA03850G

    31. [31]

      Tang L N, Du D X, Yang F, Liang Z, Ning Y, Wang H, Zhang G J. Preparation of Graphene-Modified Acupuncture Needle and Its Application in Detecting Neurotransmitters[J]. Sci. Rep., 2015,511627. doi: 10.1038/srep11627

    32. [32]

      Zhou J X, Tang L N, Yang F, Liang F X, Wang H, Li Y T, Zhang G J. MoS2/Pt Nanocomposite-Functionalized Microneedle for Real-Time Monitoring of Hydrogen Peroxide Release from Living Cells[J]. Analyst, 2017,142(22):4322-4329. doi: 10.1039/C7AN01446E

    33. [33]

      Han H T, Tao W Y, Hu X P, Ding X Y, Pan D W, Wang C C, Xu S H. Needle-Shaped Electrode for Speciation Analysis of Copper in Seawater[J]. Electrochim. Acta, 2018,289:474-482. doi: 10.1016/j.electacta.2018.08.097

    34. [34]

      Han H T, Li Y, Pan D W, Wang C C, Pan F, Ding X Y. A Novel Stainless Steel Needle Electrode Based on Porous Gold Nanomaterials for the Determination of Copper in Seawater[J]. Anal. Methods, 2019,11(14):1976-1983. doi: 10.1039/C9AY00222G

    35. [35]

      Liu Z N, Liu W B, Huang Y Z, Zhang H C. Facile Fabrication of Free-Standing Cu2O-Au Nanocomposites on Cu Foil for High Performance Glucose Sensing[J]. J. Alloys Compd., 2020,848156532. doi: 10.1016/j.jallcom.2020.156532

    36. [36]

      Zhu J H, Feng Y G, Wang A J, Mei L P, Luo X L, Feng J J. A Signal-On Photoelectrochemical Aptasensor for Chloramphenicol Assay Based on 3D Self-Supporting AgI/Ag/Bio Z-Scheme Heterojunction Arrays[J]. Biosens. Bioelectron., 2021,181(1)113158.

    37. [37]

      Li Q L, Zhang Y, Fan H L, Gong Y J, Xu Y, Lv Q Y, Xu Y R, Xiao F, Wang S A, Wang Z, Wang L. In Vitro and In Vivo Detection of Lactate with Nanohybrid-Functionalized Pt Microelectrode Facilitating Assessment of Tumor Development[J]. Biosens. Bioelectron., 2021,191113474. doi: 10.1016/j.bios.2021.113474

    38. [38]

      Ahmad Y H, Mohamed A T, El-Shafei A, Al-Qaradawi S Y, Ajaber A S. Facile One-Step Synthesis of Supportless Porous AuPtPd Nano-crystals as High Performance Electrocatalyst for Glucose Oxidation Reaction[J]. Int. J. Hydrogen Energy, 2020,45(38):19163-19173. doi: 10.1016/j.ijhydene.2020.05.020

    39. [39]

      Lin F Y, Lee P Y, Chu T F, Peng C I, Wang G J. Neutral Nonenzymatic Glucose Biosensors Based on Electrochemically Deposited Pt/Au Nanoalloy Electrodes[J]. Int. J. Nanomed., 2021,16:5551-5563. doi: 10.2147/IJN.S321480

  • 加载中
    1. [1]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

    2. [2]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    3. [3]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    4. [4]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    5. [5]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    6. [6]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    7. [7]

      Tianyao HeGan LiXiaoqiang XieDong HanYunyue LengQiuli ZhangWenming LiuGuobo LiHongxiang ZhangShan HuangTing HuangHonggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137

    8. [8]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    9. [9]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    10. [10]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    11. [11]

      Chuang LIULichao SUNQingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406

    12. [12]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    13. [13]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    14. [14]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    15. [15]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    16. [16]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    17. [17]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    18. [18]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    19. [19]

      Ling YangMin RenJie WangLiming HeShanshan WuShuai YangWei ZhaoHao ChengXiaoming ZhouMaling Gou . A non-viral gene therapy for melanoma by staphylococcal enterotoxin A. Chinese Chemical Letters, 2024, 35(5): 108822-. doi: 10.1016/j.cclet.2023.108822

    20. [20]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

Metrics
  • PDF Downloads(17)
  • Abstract views(1029)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return