Citation: Xiao-Xue WU, Yan-Yan QI, Ying-Yi WANG, Li WANG, Gao-Mei TU, Yang-He FU, De-Li CHEN, Wei-Dong ZHU, Fu-Min ZHANG. Synthesis of Amines by Oxidative Coupling of Benzylamine over a Vanadium-Nitrogen Co-doped Porous Carbon Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1049-1058. doi: 10.11862/CJIC.2022.112 shu

Synthesis of Amines by Oxidative Coupling of Benzylamine over a Vanadium-Nitrogen Co-doped Porous Carbon Catalyst

  • Corresponding author: Fu-Min ZHANG, zhangfumin@zjnu.edu.cn
  • Received Date: 12 January 2022
    Revised Date: 14 April 2022

Figures(8)

  • Synthesis of imine compounds via benzylamine oxidative coupling has become one of the most ideal methods due to its high atom economy and environmental friendliness. The key is to develop high - performance non-noble metal-based heterogeneous catalysts. In this work, a vanadium-nitrogen co-doped porous carbon (V-N-C) catalyst was prepared via high-temperature pyrolysis (900 ℃ for 2 h in an inert atmosphere) combined with acidleaching (1 mol·L-1 HCl solution at 120 ℃ for 12 h) approach by using biomass chitosan as the sacrificial template, vanadium acetylacetonate as the source of metal vanadium, and ZnCl2 as the pore-forming agent. Various characterization techniques including a high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) investigation were used to analyze the composition, structure, vanadium species size, content, and other physical and chemical properties of the catalyst, and its catalytic performance was evaluated in the oxidative cou-pling reaction of benzylamine. The characterization results showed that the specific surface area of the V-N-C catalyst was as high as 1 470 m2·g-1, the pore volume was 1.06 cm3·g-1, and the mass fraction of the vanadium species was 0.19% that were highly dispersed on the support likely in the form of single atoms (VNx). In the oxidative selfcoupling reaction of benzylamine to the imine (reaction conditions: toluene as solvent, 110 ℃, 1.01×105 Pa O2, 12 h), the developed V-N-C exhibited excellent activity (99%), exclusive selectivity (99%), outperforming the homogeneous VO(acac)2 and heterogeneous V2O5 catalysts. Moreover, V-N-C was repeatedly used 9 times without any decay in reactivity and stability. Furthermore, V-N-C presented excellent universality for a series of substrates containing different functional groups. Mechanism studies indicated that the reaction steps were involved in the initial formation of benzylimine and H2O2 intermediates by activating benzylamine and oxygen molecules, respectively, on the VNx and defect sites of V-N-C, then benzylimine and benzylamine condensed to release an NH3 molecule to gener-ate the target product imine.
  • 加载中
    1. [1]

      Pahalagedara M N, Pahalagedara L R, Kriz D, Chen S Y, Beaulieu F, Thalgaspitiya W, Suib S L. Copper Aluminum Mixed Oxide (CuAl MO) Catalyst: A Green Approach for the One - Pot Synthesis of Imines under Solvent-Free Conditions[J]. Appl. Catal. B, 2016,188:227-234. doi: 10.1016/j.apcatb.2016.02.007

    2. [2]

      Dutta B, March S, Achola L, Sahoo S, He J K, Amin A S, Wu Y, Poges S, Alpay S P, Suib S L. Mesoporous Cobalt/Manganese Oxide: A Highly Selective Bifunctional Catalyst for Amine - Imine Transformations[J]. Green Chem., 2018,20(14):3180-3185. doi: 10.1039/C8GC00862K

    3. [3]

      Mohan D C, Sadhukha A, Maayan G. A Metallopeptoid as an Efficient Bioinspired Cooperative Catalyst for the Aerobic Oxidative Synthesis of Imines[J]. J. Catal., 2017,355:139-144. doi: 10.1016/j.jcat.2017.09.018

    4. [4]

      Jin J J, Yang C J, Zhang B G, Deng K J. Selective Oxidation of Amines Using O2 Catalyzed by Cobalt Thioporphyrazine under Visible Light[J]. J. Catal., 2018,361:33-39. doi: 10.1016/j.jcat.2018.02.015

    5. [5]

      Gawronski J, Wascinska N, Gajewy J. Recent Progress in Lewis Base Activation and Control of Stereoselectivity in the Additions of Trimethylsilyl Nucleophiles[J]. Chem. Rev., 2008,108(12):5227-5252. doi: 10.1021/cr800421c

    6. [6]

      De S K, Gibbs R A. Bismuth Trichloride Catalyzed Synthesis of α - Aminonitriles[J]. Tetrahedron Lett., 2004,45(40):7407-7408. doi: 10.1016/j.tetlet.2004.08.071

    7. [7]

      Das B, Laxminarayana K, Ravikanth B, Ramarao B. Efficient Synthesis of Homoallylic Alcohols and Amines Using 2, 4, 6-Trichloro-1, 3, 5-triazine[J]. Tetrahedron Lett., 2006,47(51):9103-9106. doi: 10.1016/j.tetlet.2006.10.068

    8. [8]

      Grirrane A, Corma A, Garcia H. Highly Active and Selective Gold Catalysts for the Aerobic Oxidative Condensation of Benzylamines to Imines and One-Pot, Two-Step Synthesis of Secondary Benzylamines[J]. J. Catal., 2009,264(2):138-144. doi: 10.1016/j.jcat.2009.03.015

    9. [9]

      Liu P, Li C, Hensen E J M. Efficient Tandem Synthesis of Methyl Esters and Imines by Using Versatile Hydrotalcite - Supported Gold Nanoparticles[J]. Chem. Eur. J., 2012,18(38):12122-12129. doi: 10.1002/chem.201202077

    10. [10]

      Mielby J, Poreddy R, Engelbrekt C, Kegnaes S. Highly Selective Formation of Imines Catalyzed by Silver Nanoparticles Supported on Alumina[J]. Chin. J. Catal., 2014,35(5):670-676. doi: 10.1016/S1872-2067(14)60033-4

    11. [11]

      Neeli C K P, Ganji S, Ganjala V S P, Kamaraju S R R, Burri D R. Oxidative Coupling of Primary Amines to Imines under Base - Free and Additive - Free Conditions over AuNPS/SBA - NH2 Nanocatalyst[J]. RSC Adv., 2014,4(27):14128-14135. doi: 10.1039/C4RA00791C

    12. [12]

      Dai J, Yang J, Wang X H, Zhang L, Li Y J. Enhanced Visible-Light Photocatalytic Activity for Selective Oxidation of Amines into Imines over TiO2(B)/Anatase Mixed-Phase Nanowires[J]. Appl. Surf. Sci., 2015,349:343-352. doi: 10.1016/j.apsusc.2015.04.232

    13. [13]

      Sun D R, Ye L, Li Z H. Visible- Light -Assisted Aerobic Photocatalytic Oxidation of Amines to Imines over NH2 - MiL - 125(Ti)[J]. Appl. Catal. B, 2015,164:428-432. doi: 10.1016/j.apcatb.2014.09.054

    14. [14]

      Phasayavan W, Japa M, Pornsuwan S, Tantraviwat D, Kielar F, Golovko V B, Jungsuttiwong S, Inceesungvorn B. Oxygen - Deficient Bismuth Molybdate Nanocatalysts: Synergistic Effects in Boosting Photocatalytic Oxidative Coupling of Benzylamine and Mechanistic Insight[J]. J. Colloid Interface Sci., 2021,581:719-728. doi: 10.1016/j.jcis.2020.07.140

    15. [15]

      Jin H H, Kou Z K, Cai W W, Zhou H, Ji P X, Liu B S, Radwan A, He D P, Mu S C. P—Fe Bond Oxygen Reduction Catalysts toward High-Efficiency Metal-Air Batteries and Fuel Cells[J]. J. Mater. Chem. A, 2020,8(18):9121-9127. doi: 10.1039/D0TA02334E

    16. [16]

      Fu L L, Lu Y J, Liu Z G, Zhu R L. Influence of the Metal Sites of M-N - C (M=Co, Fe, Mn) Catalysts Derived from Metalloporphyrins in Ethylbenzene Oxidation[J]. Chin. J. Catal., 2016,37(3):398-404. doi: 10.1016/S1872-2067(15)61029-4

    17. [17]

      Zheng X J, Cao X C, Sun Z H, Zeng K, Yan J, Strasser P, Chen X, Sun S H, Yang R Z. Indiscrete Metal/Metal - N - C Synergic Active Sites for Efficient and Durable Oxygen Electrocatalysis toward Advanced Zn-Air Batteries[J]. Appl. Catal. B, 2020,272118967. doi: 10.1016/j.apcatb.2020.118967

    18. [18]

      XU F Q, HU X F, CHENG F Y, LIANG J, TAO Z L, CHEN J. Prepa-ration of Porous Carbon - Supported Ni Nanoparticles for Catalytic Hydrogen Generation from Ammonia Borane Hydrolysis[J]. Chinese J. Inorg. Chem., 2015,31(1):103-108.  

    19. [19]

      Bisen O Y, Nandan R, Yadav A K, Pavithra B, Nanda K K. In Situ Self-Organization of Uniformly Dispersed Co-N-C Centers at Moderate Temperature without a Sacrificial Subsidiary Metal[J]. Green Chem., 2021,23(8):3115-3126. doi: 10.1039/D0GC04050A

    20. [20]

      Huang K X, Zhang W Q, Li J, Fan Y J, Yang B, Rong C Y, Qi J H, Chen W, Yang J. In Situ Anchoring of Zeolite Imidazole Framework-Derived Co, N - Doped Porous Carbon on Multiwalled Carbon Nanotubes toward Efficient Electrocatalytic Oxygen Reduction[J]. ACS Sustainable Chem. Eng., 2020,8(1):478-485. doi: 10.1021/acssuschemeng.9b05810

    21. [21]

      Sun J T, Niu J, Liu M Y, Ji J, Dou M L, Wang F. Biomass- Derived Nitrogen-Doped Porous Carbons with Tailored Hierarchical Porosity and High Specific Surface Area for High Energy and Power Density Supercapacitors[J]. Appl. Surf. Sci., 2018,427:807-813.

    22. [22]

      Sun L, Fu Y, Tian C G, Yang Y, Wang L, Yin J, Ma J, Wang R H, Fu H G. Isolated Boron and Nitrogen Sites on Porous Graphitic Carbon Synthesized from Nitrogen-Containing Chitosan for Superca-pacitors[J]. ChemSusChem, 2014,7(6):1637-1646. doi: 10.1002/cssc.201400048

    23. [23]

      Yang Y H, Cui J H, Zheng M T, Hu C F, Tan S Z, Xiao Y, Yang Q, Liu Y L. One - Step Synthesis of Amino - Functionalized Fluorescent Carbon Nanoparticles by Hydrothermal Carbonization of Chitosan[J]. Chem. Commun., 2012,48(3):380-382. doi: 10.1039/C1CC15678K

    24. [24]

      Yu Z L, Li G C, Fechler N, Yang N, Ma Z Y, Wang X, Antonietti M, Yu S H. Polymerization under Hypersaline Conditions: A Robust Route to Phenolic Polymer-Derived Carbon Aerogels[J]. Angew. Chem. Int. Ed., 2016,55(47):14623-14627. doi: 10.1002/anie.201605510

    25. [25]

      Liu W G, Zhang L L, Liu X, Liu X Y, Yang X F, Miao S, Wang W T, Wang A Q, Zhang T. Discriminating Catalytically Active FeNx Spe-cies of Atomically Dispersed Fe-N-C Catalyst for Selective Oxidation of the C—H Bond[J]. J. Am. Chem. Soc., 2017,139(31):10790-10798. doi: 10.1021/jacs.7b05130

    26. [26]

      Qi Y Y, Xu Q H, Tu G M, Fu Y H, Zhang F M, Zhu W D. Vanadium Oxides Anchored on Nitrogen - Incorporated Carbon: An Efficient Heterogeneous Catalyst for the Selective Oxidation of Sulfide to Sulf-oxide[J]. Catal. Commun., 2020,145106101. doi: 10.1016/j.catcom.2020.106101

    27. [27]

      Wang X X, Cullen D A, Pan Y T, Hwang S, Wang M Y, Feng Z X, Wang J Y, Engelhard M H, Zhang H G, He Y H, Shao Y Y, Su D, More K L, Spendelow J S, Wu G. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells[J]. Adv. Mater., 2018,30(11)1706758. doi: 10.1002/adma.201706758

    28. [28]

      Yin P Q, Yao T, Wu Y, Zheng L R, Lin Y, Liu W, Ju H X, Zhu J F, Hong X, Deng Z X, Zhou G, Wei S Q, Li Y D. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts[J]. Angew. Chem. Int. Ed., 2016,55(36):10800-10805. doi: 10.1002/anie.201604802

    29. [29]

      WU X M, MAO J, ZHOU Z P, ZHANG C, BU J T, LI Z. Building a High - Performance Supercapacitor with Nitrogen - Doped Graphene Quantum Dots/MOF -Derived Porous Carbon Nanosheets[J]. Chinese J. Inorg. Chem., 2020,36(7):1298-1308.  

    30. [30]

      Xu Q H, Feng B B, Ye C L, Fu Y H, Chen D L, Zhang F M, Zhang J W, Zhu W D. Atomically Dispersed Vanadium Sites Anchored on N-Doped Porous Carbon for the Efficient Oxidative Coupling of Amines to Imines[J]. ACS Appl. Mater. Interfaces, 2021,13(13):15168-15177. doi: 10.1021/acsami.0c22453

    31. [31]

      Zhang C H, Zhao P S, Zhang Z L, Zhang J W, Yang P, Gao P, Gao J, Liu D. Co - N - C Supported on SiO2: A Facile, Efficient Catalyst for Aerobic Oxidation of Amines to Imines[J]. RSC Adv., 2017,7(75):47366-47372. doi: 10.1039/C7RA09516C

    32. [32]

      Dhakshinamoorthy A, Alvaro M, Garcia H. Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Frame-work Solids[J]. ChemCatChem, 2010,2(11):1438-1443. doi: 10.1002/cctc.201000175

    33. [33]

      Zhang N, Li X Y, Liu Y F, Long R, Li M Q, Chen S M, Qi Z M, Wang C M, Song L, Jiang J, Xiong Y J. Defective Tungsten Oxide Hydrate Nanosheets for Boosting Aerobic Coupling of Amines: Synergistic Catalysis by Oxygen Vacancies and Brønsted Acid Sites[J]. Small, 2017,13(31)1701354. doi: 10.1002/smll.201701354

    34. [34]

      Dissanayake D, Achola L A, Kerns P, Rathnayake D, He J, Macharia J, Suib S L. Aerobic Oxidative Coupling of Amines to Imines by Mesoporous Copper Aluminum Mixed Metal Oxides via Generation of Reactive Oxygen Species (Ros)[J]. Appl. Catal. B, 2019,249:32-41. doi: 10.1016/j.apcatb.2019.02.037

    35. [35]

      Chen B, Wang L Y, Dai W, Shang S S, Lv Y, Gao S. Metal- Free and Solvent-Free Oxidative Coupling of Amines to Imines with Mesoporous Carbon from Macrocyclic Compounds[J]. ACS Catal., 2015,5(5):2788-2794. doi: 10.1021/acscatal.5b00244

    36. [36]

      Zhang N, Li X Y, Liu Y F, Long R, Li M Q, Chen S M, Qi Z M, Wang C M, Song L, Jiang J, Xiong Y J. Defective Tungsten Oxide Hydrate Nanosheets for Boosting Aerobic Coupling of Amines: Synergistic Catalysis by Oxygen Vacancies and Bronsted Acid Sites[J]. Small, 2017,13(31)1701354. doi: 10.1002/smll.201701354

    37. [37]

      Qiu X, Len C, Luque R, Li Y W. Solventless Oxidative Coupling of Amines to Imines by Using Transition - Metal - Free Metal - Organic Frameworks[J]. ChemSusChem, 2014,7(6):1684-1688. doi: 10.1002/cssc.201301340

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    7. [7]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    14. [14]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

Metrics
  • PDF Downloads(23)
  • Abstract views(2191)
  • HTML views(605)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return