Citation: Jin-Yu ZHAO, Xue-Jin ZHANG, Xiao-Min YANG, Jiao-Jiao WEN, Yu-Peng HUA. Crystal Structures and Magnetic Refrigeration Properties of Two Gd2 Complexes[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 921-929. doi: 10.11862/CJIC.2022.094 shu

Crystal Structures and Magnetic Refrigeration Properties of Two Gd2 Complexes

  • Corresponding author: Yu-Peng HUA, yp_hua@126.com
  • Received Date: 24 September 2021
    Revised Date: 23 February 2022

Figures(7)

  • By utilizing a polydentate Schiff base ligand (H2L=pyridine-2-carboxylic acid (3, 5-di-tert-butyl-2-hydroxy-benzylidene)-hydrazide), reacting with Gd(dbm)3·2H2O (Hdbm=dibenzoylmethane) and Gd(NO)3·6H2O, respectively; two new Gd2 complexes formulated as [Gd2(L)2(dbm)2(C2H5OH)2] (1) and [Gd2(L)2(HL)2(DMF)]·2CH3CN (2) (DMF=N, N-dimethylformamide) have been obtained by using solvothermal method. The crystal structures and magnetic properties of the two Gd2 complexes have been systematically studied. The crystal structures study reveals that each eightcoordinate Gd3+ ion in 1 possesses a distorted triangular dodecahedron; the two central Gd(Ⅲ) ions are connected by two μ2-O, resulting in a rhombic-shaped Gd2O2 core. However, for 2, each central Gd(Ⅲ) ion is nine-coordinate and their coordination configurations can be described as distorted spherical capped square antiprism, and the two central Gd(Ⅲ) ions are connected by three μ2-O forming a triangular biconical-shaped Gd2O3 core. Magnetic investi-gations showed that the two Gd2 complexes displayed magnetic refrigeration properties with the magnetic entropy (-ΔSm) of 20.16 J·K-1·kg-1 for 1 and 17.14 J·K-1·kg-1 for 2 at ΔH=70 kOe and T=2.0 K. CCDC: 2111657, 1; 2111658, 2.
  • 加载中
    1. [1]

      Li X Y, Su H F, Li Q W, Feng R, Bai H Y, Chen H Y, Xu J, Bu X H. A Giant Dy76 Cluster: A Fused Bi-nanopillar Structural Model for Lanthanide Clusters[J]. Angew. Chem. Int. Ed., 2019,58:10184-10188. doi: 10.1002/anie.201903817

    2. [2]

      Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level[J]. J. Am. Chem. Soc., 2003,125:8694-8695. doi: 10.1021/ja029629n

    3. [3]

      Mahata P, Mondal S K, Singha D K, Majee P. Luminescent Rare-Earth-Based MOFs as Optical Sensors[J]. Dalton Trans., 2017,46:301-328. doi: 10.1039/C6DT03419E

    4. [4]

      Dong J, Cui P, Shi P F, Cheng P, Zhao B. Ultrastrong Alkali-Resisting Lanthanide-Zeolites Assembled by[Ln60] Nanocages[J]. J. Am. Chem., Soc., 2015,137:15988-15991. doi: 10.1021/jacs.5b10000

    5. [5]

      Zheng X Y, Kong X J, Zheng Z P, Long L S, Zheng L S. High-Nuclearity Lanthanide-Containing Clusters as Potential Molecular Magnetic Coolers[J]. Acc. Chem. Res., 2018,51:517-525. doi: 10.1021/acs.accounts.7b00579

    6. [6]

      Wang W M, Wu Z L, Cui J Z. Molecular Assemblies from Linear-Shaped Ln4 Clusters to Ln8 Clusters Using Different β-Diketonates: Disparate Magnetocaloric Effects and Single-Molecule Magnet Behaviours[J]. Dalton Trans, 2021,50:12931-12943. doi: 10.1039/D1DT01344K

    7. [7]

      Xu C Y, Wu Z L, Fan C J, Yan L L, Wang W M, Ji B M. Synthesis of Two Lanthanide Clusters Ln4 (Gd4 and Dy4) with[2×2] Square Grid Shape: Magnetocaloric Effect and Slow Magnetic Relaxation Behaviors[J]. J. Rare Earths, 2021,39:1082-1088. doi: 10.1016/j.jre.2020.08.015

    8. [8]

      Bar A K, Kalita P, Singh M K, Rajaraman G, Chandrasekhar V. Low-Coordinate Mononuclear Lanthanide Complexes as Molecular Nanomagnets[J]. Coord. Chem. Rev., 2018,367:163-216. doi: 10.1016/j.ccr.2018.03.022

    9. [9]

      Wang W M, Qiao W Z, Zhang H X, Wang S Y, Nie Y Y, Chen H M, Liu Z, Gao H L, Cui J Z, Zhao B. Structures and Magnetic Properties of Several Phenoxo-O Bridged Dinuclear Lanthanide Complexes: Dy Derivatives Displaying Substituent Dependent Magnetic Relaxation Behavior[J]. Dalton Trans., 2016,45:8182-8191. doi: 10.1039/C6DT00220J

    10. [10]

      Luo X M, Hu Z B, Lin Q F, Cheng W W, Cao J P, Cui C H, Mei H, Song Y, Xu Y. Exploring the Performance Improvement of Magnetocaloric Effect Based Gd-Exclusive Cluster Gd60[J]. J. Am. Chem. Soc, 2018,140:11219-11222. doi: 10.1021/jacs.8b07841

    11. [11]

      Chen Y C, Qin L, Meng Z S, Yang D F, Wu C, Fu Z D, Zheng Y Z, Liu J L, Tarasenko R, Orendác M, Prokleška J, Sechovský V, Tong M L. Study of a Magnetic-Cooling Material Gd(OH)CO3[J]. J. Mater. Chem. A, 2014,2:9851-9858. doi: 10.1039/C4TA01646G

    12. [12]

      Zhang Z M, Zangana K H, Kostopoulos A K, Tong M L, Winpenny R E P. A Pseudo-Icosahedral Cage {Gd12} Based on Aminomethylphosphonate[J]. Dalton Trans., 2016,45:9041-9044. doi: 10.1039/C6DT00876C

    13. [13]

      Zheng X Y, Jiang Y H, Zhuang G L, Liu D P, Liao H G, Kong X J, Long L S, Zheng L S. A Gigantic Molecular Wheel of {Gd140}: A New Member of the Molecular Wheel Family[J]. J. Am. Chem. Soc., 2017,139:18178-18181. doi: 10.1021/jacs.7b11112

    14. [14]

      Wang W M, Yue R X, Gao Y, Wang M J, Hao S S, Shi Y, Kang X M, Wu Z L. Large Magnetocaloric Effect and Remarkable Single-Molecule-Magnet Behavior in Triangle-Assembled Ln6 Clusters[J]. New J. Chem., 2019,43:16639-16646. doi: 10.1039/C9NJ03921J

    15. [15]

      Zheng X Y, Peng J B, Kong X J, Long L S, Zheng L S. Mixed-Anion Templated Cage-like Lanthanide Clusters: Gd27 and Dy27[J]. Inorg. Chem. Front., 2016,3:320-325. doi: 10.1039/C5QI00249D

    16. [16]

      Guo F S, Chen Y C, Mao L L, Lin W Q, Leng J D, Tarasenko R, Orendác M, Prokleška J, Sechovský V, Tong M L. Anion-Templated Assembly and Magnetocaloric Properties of a Nanoscale {Gd38} Cage versus a {Gd48} Barrel[J]. Chem. Eur. J., 2013,19:14876-14885. doi: 10.1002/chem.201302093

    17. [17]

      Peng J B, Kong X J, Zhang Q C, Orendác M, Prokleška J, Ren Y P, Long L S, Zheng Z P, Zheng L S. Beauty, Symmetry, and Magnetocaloric Effect-Four-Shell Keplerates with 104 Lanthanide Atoms[J]. J. Am. Chem. Soc., 2014,136:17938-17941. doi: 10.1021/ja5107749

    18. [18]

      Chen Y C, Prokleška J, Xu W J, Liu J L, Liu J, Zhang W X, Jia J H, Sechovský V, Tong M L. A Brilliant Cryogenic Magnetic Coolant: Magnetic and Magnetocaloric Study of Ferromagnetically Coupled GdF3[J]. J. Mater. Chem. C, 2015,3:12206-12211. doi: 10.1039/C5TC02352A

    19. [19]

      Zheng Y Z, Zhou G J, Zheng Z P, Winpenny R E P. Molecule-Based Magnetic Coolers[J]. Chem. Soc. Rev., 2014,43:1462-1475. doi: 10.1039/C3CS60337G

    20. [20]

      Wu J F, Li X L, Zhao L, Guo M, Tan J K. Enhancement of Magnetocaloric Effect through Fixation of Carbon Dioxide: Molecular Assembly from Ln4 to Ln4 Cluster Pairs[J]. Inorg. Chem., 2017,56:4104-4111. doi: 10.1021/acs.inorgchem.7b00094

    21. [21]

      Xu C Y, Qiao X Y, Tan Y, Liu S S, Hou W Y, Cui Y Y, Wu W L, Hua Y P, Wang W M. Modulating Single-Molecule Magnet Behaviors of Dy4 Clusters through Utilizing Two Different β-Diketonate Coligands[J]. Polyhedron, 2019,160:272-278. doi: 10.1016/j.poly.2018.12.046

    22. [22]

      Li X L, Li H, Chen D M, Wang C, Wu J F, Tang J K, Shi W, Cheng P. Planar Dy3 + Dy3 Clusters: Design, Structure and Axial Ligand Perturbed Magnetic Dynamics[J]. Dalton Trans., 2015,44:20316-20320. doi: 10.1039/C5DT03931B

    23. [23]

      Wang W M, Li X Z, Zhang L, Chen J L, Wang J H, Wu Z L, Cui J Z. A Series of[2×2]Square Grid Ln4 Clusters: A Large Magnetocaloric Effect and Single-Molecule-Magnet Behavior[J]. New J. Chem., 2019,43:7419-7426. doi: 10.1039/C8NJ04454F

    24. [24]

      Zhang L, Zhang P, Zhao L, Wu J F, Guo M, Tang J K. Anions Influence the Relaxation Dynamics of Mono-μ3-OH-Capped Triangular Dysprosium Aggregates[J]. Inorg. Chem., 2015,54:5571-5578. doi: 10.1021/acs.inorgchem.5b00702

    25. [25]

      Katagiri S, Tsukahara Y, Hasegawa Y, Wada Y J. Energy-Transfer Mechanism in Photoluminescent Terbium (Ⅲ) Complexes Causing Their Temperature-Dependence[J]. Bull. Chem. Soc. Jpn., 2007,80:1492-1503. doi: 10.1246/bcsj.80.1492

    26. [26]

      Boudreaux E A, Mulay L N. Theory and Applications of Molecular Paramagnetism. New York: Wiley-Interscience, 1976.

    27. [27]

      Sheldrick G M. SHELX-97, Program for the Solution and the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

    28. [28]

      Zabrodsky H, Peleg S, Avnir D. Continuous Symmetry Measures. 2. Symmetry Groups and the Tetrahedron[J]. J. Am. Chem. Soc., 1993,115:8278-8289. doi: 10.1021/ja00071a042

    29. [29]

      Wang W M, Ren Y H, Wang S, Zhan C F, Wu Z L, Zhang H, Fang M. Lanthanide Dinuclear Complexes Constructed by 8-Hydroxyquinoline Schiff Base Showing Magnetic Refrigeration and Slow Magnetic Relaxation[J]. Inorg. Chim. Acta, 2016,453:452-456. doi: 10.1016/j.ica.2016.09.002

    30. [30]

      Wang W M, Liu S Y, Xu M, Bai L, Wang H Q, Wen X, Zhao X Y, Qiao H, Wu Z L. Structures and Magnetic Properties of Phenoxo-O-Bridged Dinuclear Lanthanide(Ⅲ) Compounds: Single-Molecule Magnet Behavior and Magnetic Refrigeration[J]. Polyhedron, 2018,145:114-119. doi: 10.1016/j.poly.2018.01.037

    31. [31]

      Wang W M, Zhang H X, Wang S Y, Shen H Y, Gao H L, Cui J Z, Zhao B. Ligand Field Affected Single-Molecule Magnet Behavior of Lanthanide (Ⅲ) Dinuclear Complexes with an 8-Hydroxyquinoline Schiff Base Derivative as Bridging Ligand[J]. Inorg. Chem., 2015,54:10610-10622. doi: 10.1021/acs.inorgchem.5b01404

    32. [32]

      Zhang S W, Shi W, Li L L, Duan E Y, Cheng P. Lanthanide Coordination Polymers with"fsy-type"Topology Based on 4, 4'-Azobenzoic Acid: Syntheses, Crystal Structures, and Magnetic Properties[J]. Inorg. Chem., 2014,53:10340-10346. doi: 10.1021/ic501395p

    33. [33]

      Guan X F, Shen J X, Hu X Y, Yang Y, Han X, Zhao J Q, Wang J, Shi Y, Wang W M. Synthesis, Structures and Magnetic Refrigeration Properties of Four Dinuclear Gadolinium Compounds[J]. Polyhedron, 2019,166:17-22. doi: 10.1016/j.poly.2019.03.022

    34. [34]

      Wang S Y, Wang W M, Zhang H X, Shen H Y, Jiang L, Cui J Z, Gao H L. Seven Phenoxido-Bridged Complexes Encapsulated by 8-Hydroxyquinoline Schiff Base Derivatives and β-Diketone Ligands: Single-Molecule Magnet, Magnetic Refrigeration and Luminescence Properties[J]. Dalton Trans., 2016,45:3362-337. doi: 10.1039/C5DT04391C

    35. [35]

      Wang W M, He L Y, Wang X X, Shi Y, Wu Z L, Cui J Z. Linear-Shaped Ln4 and Ln6 Clusters Constructed by a Polydentate Schiff Base Ligand and a β-Diketone Co-ligand: Structures, Fluorescence Properties, Magnetic Refrigeration and Single-Molecule Magnet Behavior[J]. Dalton Trans., 2019,48:16744-16755. doi: 10.1039/C9DT03478A

    36. [36]

      Wang K, Chen Z L, Zou H H, Zhang S H, Li Y, Zhang X Q, Sun W Y, Liang F P. Diacylhydrazone-Assembled {Ln11} Nanoclusters Featuring a"Double-Boats Conformation"Topology: Synthesis, Structures and Magnetism[J]. Dalton Trans., 2018,47:2337-2343. doi: 10.1039/C7DT03179C

    37. [37]

      Wang K, Chen Z L, Zou H H, Hu K, Li H Y, Zhang Z, Sun W Y, Liang F P. A Single-Stranded {Gd18} Nanowheel with a Symmetric Polydentate Diacylhydrazone Ligand[J]. Chem. Commun., 2016,52:8297-8300. doi: 10.1039/C6CC02208A

    38. [38]

      Luo Z R, Zou H H, Chen Z L, Li B, Wang K, Liang F P. Triethylamine-Templated Nanocalix Ln12 Clusters of Diacylhydrazone: Crystal Structures and Magnetic Properties[J]. Dalton Trans., 2019,48:17414-17421. doi: 10.1039/C9DT03335A

    39. [39]

      Chang L X, Xiong G, Wang L, Cheng P, Zhao B. A 24-Gd Nanocapsule with a Large Magnetocaloric Effect[J]. Chem. Commun., 2013,49:1055-1057. doi: 10.1039/C2CC35800J

    40. [40]

      Wang W M, Duan W W, Yue L C, Wang Y L, Ji W Y, Zhang C F, Fang M, Wu Z L. Magnetic Refrigeration and Single-Molecule Magnet Behaviour of Two Lanthanide Dinuclear Complexes (Ln=Gd, Tb) Based on 8-Hydroxyquinolin Derivatives[J]. Inorg. Chim. Acta, 2017,466:145-150. doi: 10.1016/j.ica.2017.05.059

    41. [41]

      Chu X Y, Zhang H X, Chang Y X, Nie Y Y, Cui J Z, Gao H L. A Series of Ln2 Complexes Based on an 8-Hydroxyquinoline Derivative: Slow Magnetization Relaxation and Photo-Luminescence Properties[J]. New J. Chem., 2018,42:5688-5697. doi: 10.1039/C7NJ04942K

    42. [42]

      Wang W M, Liu H H, He L T, Han X R, Wu Z L, Ran Y G, Zou J Y, Fang M. Structures, Luminescence Properties, Magnetocaloric Effect and Slow Magnetic Relaxation of Three Ln(Ⅲ) Complexes Based on 8-Hydroxyquinoline Schiff-Base Ligand[J]. Polyhedron, 2017,133:119-124. doi: 10.1016/j.poly.2017.04.034

    43. [43]

      Wu D F, Liu Z, Ren P, Liu X H, Wang N, Cui J Z, Gao H L. A New Family of Dinuclear Lanthanide Complexes Constructed from an 8-Hydroxyquinoline Schiff Base and β-Diketone: Magnetic Properties and Near-Infrared Luminescence[J]. Dalton Trans., 2019,48:1392-1403. doi: 10.1039/C8DT04384A

    44. [44]

      Wang W M, Guan X F, Liu X D, Fang M, Zhang C F, Fang M, Wu Z L. Two Gd2 Compounds Constructed by 8-Hydroxyquinoline Schiff Base Ligands: Synthesis, Structure, and Magnetic Refrigeration[J]. Inorg. Chem. Commun, 2017,79:8-11. doi: 10.1016/j.inoche.2017.03.014

    45. [45]

      Xia Q Y, Feng M Y, Ma D X, Shi S M, Xie Y C, Tian W, Shi H J, Wang Q L, Wang W M. Structures, Luminescent Properties and Magnetic Refrigeration of Two Series of Ln2 Compounds[J]. Polyhedron, 2019,166:141-145. doi: 10.1016/j.poly.2019.03.040

    46. [46]

      Wang W M, Wang Q, Bai L, Qiao H, Zhao X Y, Xu M, Liu S Y, Shi Y, Fang M, Wu Z L. Lanthanide-Directed Fabrication of Three Phenoxo-O Bridged Dinuclear Compounds Showing Magnetic Refrigeration and Single-Molecule Magnet Behavior[J]. Polyhedron, 2018,142:43-48. doi: 10.1016/j.poly.2017.12.017

    47. [47]

      Shi Q H, Xue C L, Fan C J, Yan L L, Qiao N, Fang M, Wang S F. Magnetic Refrigeration Property and Slow Magnetic Relaxation Behavior of Five Dinuclear Ln (Ⅲ)-Based Compounds[J]. Polyhedron, 2021,194:114938-114944. doi: 10.1016/j.poly.2020.114938

    48. [48]

      Chang Y X, Hou F, Feng M Y, Zhang H H, Kang T T, Wang W M, Fang M. Two Dinuclear Lanthanide(Ⅲ) Compounds Based on a Multidentate Ligand: Structures, Magnetic Refrigeration and Slow Magnetic Relaxation[J]. Inorg. Chim. Acta, 2019,486:83-87. doi: 10.1016/j.ica.2018.10.045

    49. [49]

      Evangelisti M, Roubeau O, Palacios E, Camon A, Hooper T N, Brechin E K, Alonso J J. Cryogenic Magnetocaloric Effect in a Ferromagnetic Molecular Dimer[J]. Angew. Chem. Int. Ed., 2011,50:6606-6609. doi: 10.1002/anie.201102640

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    12. [12]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    13. [13]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    14. [14]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    17. [17]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    18. [18]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    19. [19]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    20. [20]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

Metrics
  • PDF Downloads(3)
  • Abstract views(656)
  • HTML views(176)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return