Citation: Zi-Xuan WANG, Yuan-Yuan JIANG, Ru-Ru ZHOU, Ping CHEN, Zhao-Yin HOU. Preparation and Application of the Bifunctional Pd/ZrHP Catalyst for Selective Hydrogenation of Phenol[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 812-820. doi: 10.11862/CJIC.2022.087 shu

Preparation and Application of the Bifunctional Pd/ZrHP Catalyst for Selective Hydrogenation of Phenol

Figures(12)

  • Hydrogenation of phenol to cyclohexanone is a vital step in the production of synthetic fiber (nylon). In this work, a layered-structured solid acid (zirconium hydrogen phosphate, ZrHP) supported Pd catalyst was synthe- sized in a microwave method. The structure and property of Pd/ZrHP catalyst were characterized via X-ray diffrac- tion (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), nitro- gen adsorption- desorption, X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD) technologies. It was found that Pd/ZrHP catalyst exhibited better performance than the Pd-based catalysts supported by traditional oxide (Al2O3, SiO2, MgO), molecular sieve (H-Beta), and active carbon (XC-72) under the mild condi- tion (100 ℃, 1.0 MPa H2). The specific activity of the surface Pd atom in Pd/ZrHP reached 612.2 h-1, and it could be recycled five times without obvious deactivation. The synergistic effect between Pd metal and the acidic sites on ZrHP surface might be the main reason for the selective formation of cyclohexanone.
  • 加载中
    1. [1]

      Lin C J, Huang S H, Lai N C, Yang C M. Efficient Room-Temperature Aqueous-Phase Hydrogenation of Phenol to Cyclohexanone Catalyzed by Pd Nanoparticles Supported on Mesoporous MMT-1 Silica with Unevenly Distributed Functionalities[J]. ACS Catal., 2015,5(7):4121-4129. doi: 10.1021/acscatal.5b00380

    2. [2]

      He J, Lu X H, Shen Y, Jing R, Nie R F, Zhou D, Xia Q H. Highly Selective Hydrogenation of Phenol to Cyclohexanol over Nano Silica Supported Ni Catalysts in Aqueous Medium[J]. J. Mol. Catal., 2017,440:87-95. doi: 10.1016/j.mcat.2017.07.016

    3. [3]

      Guo Q, Mo S G, Liu P X, Zheng W D, Qin R X, Xu C F, Wu Y Y Q, Wu B H, Zheng N F. Air-Promoted Selective Hydrogenation of Phenol to Cyclohexanone at Low Temperature over Pd-Based Nanocatalysts[J]. Sci. China Chem., 2017,60(11):1444-1449. doi: 10.1007/s11426-017-9095-4

    4. [4]

      Gao Y N, Hensen E J M. Highly Active and Stable Spinel-Oxide Sup-ported Gold Catalyst for Gas-Phase Selective Aerobic Oxidation of Cyclohexanol to Cyclohexanone[J]. Catal. Commun., 2018,17:53-56.

    5. [5]

      Liu H Z, Jiang T, Han B X, Liang S G, Zhou Y X. Selective Phenol Hydrogenation to Cyclohexanone Over a Dual Supported Pd-Lewis Acid Catalyst[J]. Science, 2009,326(5957):1250-1252. doi: 10.1126/science.1179713

    6. [6]

      Jiang H, Qu Z Y, Li Y, Huang J, Chen R Z, Xing W H. One-Step Semi-Continuous Cyclohexanone Production via Hydrogenation of Phenol in a Submerged Ceramic Membrane Reactor[J]. Chem. Eng. J., 2016,284:724-732. doi: 10.1016/j.cej.2015.09.037

    7. [7]

      Zhao C C, Zhang Z Y, Liu Y R, Shang N Z, Wang H J, Wang C, Gao Y J. Palladium Nanoparticles Anchored on Sustainable Chitin for Phenol Hydrogenation to Cyclohexanone[J]. ACS Sustainable Chem. Eng., 2020,8(32):12304-12312. doi: 10.1021/acssuschemeng.0c04751

    8. [8]

      Shafaghat H, Rezaei P S, Daud W M A W. Catalytic Hydrogenation of Phenol, Cresol and Guaiacol over Physically Mixed Catalysts of Pd/C and Zeolite Solid Acids[J]. RSC Adv., 2015,5(43):33990-33998. doi: 10.1039/C5RA00367A

    9. [9]

      Wang H J, Zhao F Y, Fujita S I, Arai M. Hydrogenation of Phenol in ScCO2 over Carbon Nanofiber Supported Rh Catalyst[J]. Catal. Commun., 2008,9(3):362-368. doi: 10.1016/j.catcom.2007.07.002

    10. [10]

      Xiang Y Z, Ma L, Lu C S, Zhang Q F, Li X N. Aqueous System for the Improved Hydrogenation of Phenol and Its Derivatives[J]. Green Chem., 2008,10(9):939-943. doi: 10.1039/b803217c

    11. [11]

      Zhang Z Z, Xu M K, Ho W K, Zhang X W, Yang Z Y, Wang X X. Simultaneous Excitation of PdCl2 Hybrid Mesoporous g-C3N4 Molecular/Solid-State Photocatalysts for Enhancing the Visible-Light-Induced Oxidative Removal of Nitrogen Oxides[J]. Appl. Catal. B, 2016,184:174-181. doi: 10.1016/j.apcatb.2015.11.034

    12. [12]

      Yang X, Du L, Liao S J, Li Y X, Song H Y. High-Performance Gold-Promoted Palladium Catalyst towards the Hydrogenation of Phenol with Mesoporous Hollow Spheres as Support[J]. Catal. Commun., 2012,17:29-33. doi: 10.1016/j.catcom.2011.10.006

    13. [13]

      Nelson N C, Manzano J S, Sadow A D, Overbury S H, Slowing I I. Selective Hydrogenation of Phenol Catalyzed by Palladium on High-Surface-Area Ceria at Room Temperature and Ambient Pressure[J]. ACS Catal., 2015,5(4):2051-2061. doi: 10.1021/cs502000j

    14. [14]

      YAN R H, CAI W Q, ZHUO J L, WANG X, LI M Z. One-Pot Solvent Evaporation Induced Self-Assembly Synthesis of Pd-Ba-Zn/γ-Al 2O3 Catalyst with Homogeneous Distribution of the Promoters and Its Hydrogenation Performance of Anthraquinone[J]. Chemical Industry and Engineering Progress, 2018,37(3):1014-1020.  

    15. [15]

      Zhong J W, Chen J Z, Chen L M. Selective Hydrogenation of Phenol and Related Derivatives[J]. Catal. Sci. Technol., 2014,4(10):3555-3569. doi: 10.1039/C4CY00583J

    16. [16]

      Mahata N, Vishwanathan V.. Influence of Palladium Precursors on Structural Properties and Phenol Hydrogenation Characteristics of Supported Palladium Catalysts[J]. J. Catal., 2000,196(2):262-270. doi: 10.1006/jcat.2000.3041

    17. [17]

      Zhao C, Yu Y Z, Jentys A, Lercher J A.. Understanding the Impact of Aluminum Oxide Binder on Ni/HZSM-5 for Phenol Hydrodeoxygen-ation[J]. Appl. Catal. B, 2013,132:282-292.

    18. [18]

      Zhao M S, Shi J J, Hou Z Y.. Selective Hydrogenation of Phenol to Cyclohexanone in Water over Pd Catalysts Supported on Amberlyst- 45[J]. Chin. J. Catal., 2016,37(2):234-239. doi: 10.1016/S1872-2067(15)60997-4

    19. [19]

      Li X W, Jiang Y Y, Zhou R R, Hou Z Y.. Layered α-Zirconium Phos-phate: An Efficient Catalyst for the Synthesis of Solketal from Glycerol[J]. Appl. Clay Sci., 2019,174:120-126. doi: 10.1016/j.clay.2019.03.034

    20. [20]

      Bashir A, Ahad S, Malik L A, Qureashi A, Manzoor , T , Dar G N, Pandith A H. Revisiting the Old and Golden Inorganic Material, Zir-conium Phosphate: Synthesis, Intercalation, Surface Functionaliza-tion, and Metal Ion Uptake[J]. Ind. Eng. Chem. Res., 2020,59(52):22353-22397. doi: 10.1021/acs.iecr.0c04957

    21. [21]

      Li D F, Ni W X, Hou Z S. Conversion of Biomass to Chemicals over Zirconium Phosphate-Based Catalysts[J]. Chin. J. Catal., 2017,38(11):1784-1793. doi: 10.1016/S1872-2067(17)62908-5

    22. [22]

      Li N, Tompsett G A, Huber G W.. Renewable High -Octane Gasoline by Aqueous-Phase Hydrodeoxygenation of C5 and C6 Carbohydrates over Pt/Zirconium Phosphate Catalysts.[J]. ChemSusChem, 2010,3(10):1154-1157. doi: 10.1002/cssc.201000140

    23. [23]

      Gong H H, Zhou C, Cui Y, Dai S, Zhao X G, Lou R H, An P F, Li H, Wang H F, Hou Z S. Direct Transformation of Glycerol to Propanal using Zirconium Phosphate-Supported Bimetallic Catalysts[J]. ChemSusChem, 2020,13(18):4954-4966. doi: 10.1002/cssc.202001600

    24. [24]

      Lou R H, Zhao X G, Gong H H, Qian W, Li D F, Chen M Y, Cui K, Wang J J, Hou Z S. Effect of Tungsten Modification on Zirconium Phosphate-Supported Pt Catalyst for Selective Hydrogenolysis of Glycerol to 1-Propanol[J]. Energy Fuels, 2020,34(7):8707-8717. doi: 10.1021/acs.energyfuels.0c00645

    25. [25]

      Zhao X G, Lin Q, Xiao W D. Characterization of Pd-CeO2/α-Alumina Catalyst for Synthesis of Dimethyl Oxalate[J]. Appl. Catal. A, 2005,284(1/2):253-257.

    26. [26]

      Hu Y, Yang H M, Zhang Y C, Hou Z S, Wang X R, Qiao Y X, Li H, Feng B, Huang Q F. The Functionalized Ionic Liquid-Stabilized Pal-ladium Nanoparticles Catalyzed Selective Hydrogenation in Ionic Liquid[J]. Catal. Commun., 2009,10(14):1903-1907. doi: 10.1016/j.catcom.2009.06.025

    27. [27]

      LU Z Y, HONG Y Y, DAI Y Y, LI X Q, YAN X H. Synthesis and Characterization of Palladium Nanoparticles with High Proportion of Exposed (111) Facet for Hydrogenation Performance[J]. Chinese J. Inorg. Chem., 2021,37(6):1143-1151.  

    28. [28]

      Zhu W W, Yang H M, Yu Y Y, Hua L, Li H, Feng B, Hou Z S. Amphiphilic Ionic Liquid Stabilizing Palladium Nanoparticles for Highly Efficient Catalytic Hydrogenation[J]. Phys. Chem. Chem. Phys., 2011,13(30):13492-13500. doi: 10.1039/c1cp20255c

    29. [29]

      Jin D F, Hou Z Y, Zhang L W, Zheng X M.. Selective Synthesis of para-para'-Dimethyl Methane over H -Beta Zeolite[J]. Catal. Today, 2008,131(1/4):378-384.

    30. [30]

      Nie R F, Lei H, Pan S Y, Wang L N, Fei J H, Hou Z Y. Core-Shell Structured CuO-ZnO@H-ZSM-5 Catalysts for CO Hydrogenation to Dimethyl Ether[J]. Fuel, 2012,96(1):419-425.

    31. [31]

      Wang Y, Yao J, Li H R, Su D S, Antonietti M. Highly Selective Hydrogenation of Phenol and Derivatives over a Pd@Carbon Nitride Catalyst in Aqueous Media[J]. J. Am. Chem. Soc., 2011,133(8):2362-2365. doi: 10.1021/ja109856y

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    3. [3]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    7. [7]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    10. [10]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    11. [11]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    12. [12]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    13. [13]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    14. [14]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    15. [15]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    16. [16]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    17. [17]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    18. [18]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    19. [19]

      Ting PanDinghu ZhangGuomei YouXiaoxia WuChenguang ZhangXinyu MiaoWenzhi RenYiwei HeLulu HeYuanchuan GongJie LinAiguo WuGuoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857

    20. [20]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

Metrics
  • PDF Downloads(11)
  • Abstract views(1064)
  • HTML views(225)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return