Citation: Liang-Feng PAN, Xin YAN, Chao-Li WANG, Ming XIE, Zhuo LI, Tao AI, Yan-Hui NIU. Preparation and Visible Light Photocatalytic Activity of Hollow Tubular g-C3N4/Ag3PO4 Composite Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 695-704. doi: 10.11862/CJIC.2022.076 shu

Preparation and Visible Light Photocatalytic Activity of Hollow Tubular g-C3N4/Ag3PO4 Composite Catalyst

  • Corresponding author: Xin YAN, xinyan@chd.edu.cn
  • Received Date: 17 November 2021
    Revised Date: 22 February 2022

Figures(8)

  • Hollow tubular g-C3N4/Ag3PO4 composite catalyst was prepared by chemical precipitation method. The structure, morphology, and optical properties of the composite catalyst were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), and fluores- cence emission spectroscopy. The results showed that Ag3PO4 nanoparticles can be uniformly dispersed on the surface of hollow tubular g-C3N4, and closely combined to form a heterojunction. The photocatalytic activity of the composite catalyst under visible light irradiation was studied by the degradation of tetracycline hydrochloride (TC). The results showed that the degradation rate of TC over the hollow tubular g-C3N4/Ag3PO4 composite catalyst was 98% within 80 min, and its degradation reaction rate constant was three times that of pure Ag3PO4. After five cycles, the degradation rate of TC by the composite catalyst maintained 87%, indicating excellent stability. The capture experiment showed that hole (h+) and superoxide anion (·O2-) were the main active species in the photocatalytic reaction. Based on the energy band theory, the Z-scheme photocatalytic mechanism of g-C3N4/Ag3PO4 composite catalyst heterojunction was proposed.
  • 加载中
    1. [1]

      Hao R, Xiao X, Zuo X X, Nan J M, Zhang W D. Efficient Adsorption and Visible-Light Photocatalytic Degradation of Tetracycline Hydrochloride using Mesoporous BiOI Microspheres[J]. J. Hazard. Mater., 2012,209-210:137-145. doi: 10.1016/j.jhazmat.2012.01.006

    2. [2]

      Sarmaha A K, Meyer M T, Boxall B A. A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment[J]. Chemosphere, 2006,65(5):725-759. doi: 10.1016/j.chemosphere.2006.03.026

    3. [3]

      Wang H L, Zhang L S, Chen Z G, Hu J Q, Li S J, Wang Z H, Liu J S, Wang X C. Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances[J]. Chem. Soc. Rev., 2014,45(15):5234-5244.

    4. [4]

      ZHAO M X, MENG Z, LI H P, MA Z Q, ZHAN H J, LIU W Y. Photodegradation of Antibiotic in Environmental Water by Graphene Oxide Modulation Bismuth Molybdate under Visible Light Irradiation[J]. Chem. J. Chinese Universities, 2020,41(11):2479-2487.  

    5. [5]

      Li Z S, Luo W J, Zhang M L, Feng J Y, Zou Z G. Photoelectrochemical Cells for Solar Hydrogen Production: Current State of Promising Photoelectrodes, Methods to Improve Their Properties, and Outlook[J]. Energy Environ. Sci., 2013,6:347-370. doi: 10.1039/C2EE22618A

    6. [6]

      Ma Y, Wang X L, Jia Y S, Chen X B, Han H X, Li C. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations[J]. Chem. Rev., 2014,114(19):9987-10043.

    7. [7]

      Liu G, Sun C H, Cheng L, Jin Y G, Lu H F, Wang L Z, Smith S C, Lu G Q, Cheng H M. Efficient Promotion of Anatase TiO2 Photocatalysis via Bifunctional Surface-Terminating Ti-O-B-N Structures[J]. J. Phys. Chem. C, 2009,113(28):12317-12324. doi: 10.1021/jp900511u

    8. [8]

      Hernández-Alonso M D, Fresno F, Suárez S, Coronado J M. Development of Alternative Photocatalysts to TiO2: Challenges and Opportunities[J]. Energy Environ. Sci., 2009,2:1231-1257. doi: 10.1039/b907933e

    9. [9]

      Yi Z G, Ye J H, Kikugawa N, Kako T, Ouyang S X, Stuart-Williams H, Yang H, Cao J Y, Luo W J, Li Z S, Liu Y, Withers R L. An ortho-Phosphate Semiconductor with Photooxidation Properties under Visible-Light Irradiation[J]. Nat. Mater., 2010,9:559-564. doi: 10.1038/nmat2780

    10. [10]

      Lu B Q, Ma N, Wang Y P, Qiu Y W, Hu H H, Zhao J H, Liang D Y, Xu S, Li X Y, Zhu Z Y, Cui C. Visible-Light-Driven TiO2/Ag3PO4/GO Heterostructure Photocatalyst with Dual-Channel for Photo-Generated Charges Separation[J]. J. Alloys Compd., 2015,630(5):163-171.

    11. [11]

      WANG X G, LIU K, ZHU H, LI C Y, LIN L L, GUO F, DAI H L. MoSe2/Ag3PO4 Composites: Preparation and Photocatalytic Properties for Degradation of Rhodamine B under Visible Light[J]. Chinese J. Inorg. Chem., 2021,37(2):327-339.  

    12. [12]

      Du C Y, Song J H, Tan S Y, Yang L, Yu G L, Chen H, Zhou L, Zhang Z, Zhang Y, Su Y H, Wen X F, Wang S T. Facile Synthesis of Z-Scheme ZnO/Ag/Ag3PO4 Composite Photocatalysts with Enhanced Performance for the Degradation of Ciprofloxacin[J]. Mater. Chem. Phys., 2021,260(34)124136.

    13. [13]

      Zhang L L, Zhang H C, Huang H, Liu Y, Kang Z H. Ag3PO4/SnO2 Semiconductor Nanocomposites with Enhanced Photocatalytic Activity and Stability[J]. New J. Chem., 2012,36(8):1541-1544. doi: 10.1039/c2nj40206h

    14. [14]

      Mousavi M, Habibi-Yangjeh A. Novel Magnetically Separable g-C3N4/Fe3O4/Ag3PO4/Co3O4 Nanocomposites: Visible-Light-Driven Photocatalysts with Highly Enhanced Activity[J]. Adv. Powder Technol., 2017,28(6):1540-1553. doi: 10.1016/j.apt.2017.03.025

    15. [15]

      Zhou L, Zhang W, Chen L, Deng H P, Wan J L. A Novel Ternary Visible-Light-Driven Photocatalyst AgCl/Ag3PO4/g-C3N4: Synthesis, Characterization, Photocatalytic Activity for Antibiotic Degradation and Mechanism Analysis[J]. Catal. Commun., 2017,100:191-195. doi: 10.1016/j.catcom.2017.06.049

    16. [16]

      YA NX, HUI XY, GA OQ, YU GJ, MO YC, YE ZM, LI JC, MAZ Y, SUN G D. Synthesis and Visible Light Photocatalytic Performance of Ag3PO4/MoS2 Nanosheets Composite Photocatalyst[J]. Chinese J. Inorg. Chem., 2017,33(10):1782-1788. doi: 10.11862/CJIC.2017.212 

    17. [17]

      Li J W, Yang X Q, Ma C R, Lei Y, Cheng Z Y, Rui Z B. Selectively Recombining the Photoinduced Charges in Bandgap-Broken Ag3PO4/GdCrO3 with a Plasmonic Ag Bridge for Efficient Photothermocatalytic VOCs Degradation and CO2 Reduction[J]. Appl. Catal. B, 2021,291120053. doi: 10.1016/j.apcatb.2021.120053

    18. [18]

      Haounati R, El Guerdaoui A, Ouachtak H, El Haouti R, Bouddouch A, Hafid N, Bakiz B, Santos D M F, Labd Taha M, Addi A A. Design of Direct Z-Scheme Superb Magnetic Nanocomposite Photocatalyst Fe3O4/Ag3PO4@Sep for Hazardous Dye Degradation[J]. Sep. Purif. Technol., 2021,277119399. doi: 10.1016/j.seppur.2021.119399

    19. [19]

      Wan J, Du X, Liu E Z, Hu Y, Fan J, Hu X Y. Z-Scheme Visible-Light-Driven Ag3PO4 Nanoparticle@MoS2 Quantum Dot/Few-Layered MoS2 Nanosheet Heterostructures with High Efficiency and Stability for Photocatalytic Selective Oxidation[J]. J. Catal., 2017,345:281-294. doi: 10.1016/j.jcat.2016.11.013

    20. [20]

      Bu Y Y, Chen Z Y, Sun C J. Highly Efficient Z-Scheme Ag3PO4/Ag/ WO3-x Photocatalyst for Its Enhanced Photocatalytic Performance[J]. Appl. Catal. B, 2015,179:363-371. doi: 10.1016/j.apcatb.2015.05.045

    21. [21]

      Chen S, Huang D L, Zeng G M, Xue W J, Lei L, Xu P, Deng R, Li J, Cheng M. In-Situ Synthesis of Facet-Dependent BiVO4/Ag3PO4/ PANI Photocatalyst with Enhanced Visible-Light-Induced Photocatalytic Degradation Performance: Synergism of Interfacial Coupling and Hole-Transfer[J]. Chem. Eng. J., 2020,382122840. doi: 10.1016/j.cej.2019.122840

    22. [22]

      Xiang Q J, Yu J G, Jaroniec M. Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites[J]. J. Phys. Chem. C, 2011,115(15):7355-7363. doi: 10.1021/jp200953k

    23. [23]

      Yan X, Li J T, Zhou H F. Molten Salts Synthesis and Visible Light Photocatalytic Activity of Crystalline Poly(triazine imide) with Different Morphologies[J]. J. Mater. Sci.: Mater Electron., 2019,167(1/2/3):418-426.

    24. [24]

      Wang Y, Li G S, Zhang Y L, Li L P, Shang M Y. Layer-by-Layer Assembly into Bulk-like g-C3N4 via Artificial Manipulation of Electrostatic Forces[J]. Chem. Commun., 2020,56:15663-15666. doi: 10.1039/D0CC05851C

    25. [25]

      Wang X H, Nan Z D. Highly Efficient Fenton-like Catalyst Fe-g-C3N4 Porous Nanosheets Formation and Catalytic Mechanism[J]. Sep. Purif. Technol., 2020,233116023. doi: 10.1016/j.seppur.2019.116023

    26. [26]

      Liang Q H, Liu X J, Wang J J, Liu Y, Liu Z F, Tang L, Shao B B, Zhang W, Gong S X, Cheng M, He Q Y, Feng C Y. In-Situ Self-Assembly Construction of Hollow Tubular g-C3N4 Isotype Heterojunction for Enhanced Visible-Light Photocatalysis: Experiments and Theories[J]. J. Hazard. Mater., 2021,401123355. doi: 10.1016/j.jhazmat.2020.123355

    27. [27]

      Chai B, Zou F Y, Chen W J. Facile Synthesis of Ag3PO4/C3N4 Composites with Improved Visible Light Photocatalytic Activity[J]. J. Mater. Res., 2015,30(8):1128-1136. doi: 10.1557/jmr.2015.91

    28. [28]

      Liu L, Qi Y H, Lu J R, Lin S L, An W J, Liang Y H, Cui W Q. A Stable Ag3PO4@g-C3N4 Hybrid Core@Shell Composite with Enhanced Visible Light Photocatalytic Degradation[J]. Appl. Catal. B, 2016,183:133-141. doi: 10.1016/j.apcatb.2015.10.035

    29. [29]

      Zhang J F, Lv J L, Dai K, Liu Q, Liang C H, Zhu G P. Facile and Green Synthesis of Novel Porous g-C3N4/Ag3PO4 Composite with Enhanced Visible Light Photocatalysis[J]. Ceram. Int., 2017,43(1):1522-1529. doi: 10.1016/j.ceramint.2016.10.125

    30. [30]

      Zhao Z H, Fan J M, Liu W H, Xue Y Q, Yin S. In-Situ Hydrothermal Synthesis of Ag3PO4/g-C3N4 Composite and Their Photocatalytic Decomposition of NOx[J]. J. Alloys Compd., 2017,695:2812-2819. doi: 10.1016/j.jallcom.2016.12.001

    31. [31]

      Guo F, Cai Y, Guan W S, Shi W D. Ag3PO4 Nanoparticles Decorated on Sheet-on-Sheet Structured g-C3N4/Znln2S4 for Enhanced Photocatalytic Activity[J]. Mater. Lett., 2017,201:62-65. doi: 10.1016/j.matlet.2017.04.142

    32. [32]

      Zheng J F, Li L, Dai Z Y, Tian Y L, Fang T, Xin S T, Zhu B C, Liu Z J, Nie L H. A Novel Fenton-like Catalyst of Ag3PO4/g-C3N4: Its Performance and Mechanism for Tetracycline Hydrochloride Degradation in Dark[J]. Appl. Surf. Sci., 2022,571151305. doi: 10.1016/j.apsusc.2021.151305

    33. [33]

      Mukhair H M, Abdullah A H, Zainal Z, Lim H. PES-Ag3PO4/g-C3N4 Mixed Matrix Film Photocatalyst for Degradation of Methyl Orange Dye[J]. Polymers, 2021,13(11)1746. doi: 10.3390/polym13111746

    34. [34]

      Ham Y, Maeda K, Cha D, Takanabe K, Domen K. Synthesis and Photocatalytic Activity of Poly(triazine imide)[J]. Chem. Asian J., 2013,8(1):218-224. doi: 10.1002/asia.201200781

    35. [35]

      Schwinghammer K, Mesch M B, Duppel V, Ziegler C, Senker J, Lotsch B V. Crystalline Carbon Nitride Nanosheets for Improved Visible-Light Hydrogen Evolution[J]. J. Am. Chem. Soc., 2014,136(5):1730-1733. doi: 10.1021/ja411321s

    36. [36]

      Liu L, Shi Q, Yin N, Zhang M, Liu X, Zheng H, Wu G T, Chen P. Enhanced Room-Temperature Ferromagnetic Properties in Ultrathin Two-Dimensional Metal-Free Poly(triazine imide) Nanosheets[J]. Carbon, 2017,124:486-491. doi: 10.1016/j.carbon.2017.09.009

    37. [37]

      Chai B, Peng T Y, Mao J, Li K, Zan L. Graphitic Carbon Nitride (g-C3N4)-Pt-TiO2 Nanocomposite as an Efficient Photocatalyst for Hydrogen Production under Visible Light Irradiation[J]. Phys. Chem. Chem. Phys., 2012,14:16745-16752. doi: 10.1039/c2cp42484c

    38. [38]

      Lin Q Y, Li L, Liang S J, Liu M H, Bi J H, Wu L. Efficient Synthesis of Monolayer Carbon Nitride 2D Nanosheet with Tunable Concentration and Enhanced Visible-Light Photocatalytic Activities[J]. Appl. Catal. B, 2015,163:135-142. doi: 10.1016/j.apcatb.2014.07.053

    39. [39]

      Yang S B, Gong Y J, Zhang J S, Zhan L, Ma L L, Fang Z Y, Vajtai R, Wang X C, Ajayan P M. Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light[J]. Adv. Mater., 2013,25:2452-2456. doi: 10.1002/adma.201204453

    40. [40]

      Cao W R, Gui Z Y, Chen L F, Zhu X D, Qi Z Z. Facile Synthesis of Sulfate-Doped Ag3PO4 with Enhanced Visible Light Photocatalystic Activity[J]. Appl. Catal. B, 2017,200:681-689. doi: 10.1016/j.apcatb.2016.07.030

    41. [41]

      Tian J, Yan T J, Qiao Z, Wang L L, Li W J, You J M, Huang B B. Anion-Exchange Synthesis of Ag2S/Ag3PO4 Core/Shell Composites with Enhanced Visible and NIR Light Photocatalytic Performance and the Photocatalytic Mechanisms[J]. Appl. Catal. B, 2017,209:566-578. doi: 10.1016/j.apcatb.2017.03.022

    42. [42]

      Yan X, Gao Q, Qin J, Hui X Y, Ye Z M, Li J C, Ma Z Y. A Facile Method for Fabricating TiO2/g-C3N4 Hollow Nanotube Heterojunction and Its Visible Light Photocatalytic Performance[J]. Mater. Lett., 2018,217:1-4. doi: 10.1016/j.matlet.2017.12.142

    43. [43]

      Yan X, Qin J, Ning G T, Li J T, Ai T, Su X H, Wang Z J. A Novel Poly(triazine imide) Hollow Tube/ZnO Heterojunction for Tetracycline Hydrochloride Degradation under Visible Light Irradiation[J]. Adv. Powder. Technol., 2019,30:359-365. doi: 10.1016/j.apt.2018.11.013

    44. [44]

      Yuan Q, Chen L, Xiong M, He J, Luo S L, Au C T, Yin S F. Cu2O/ BiVO4 Heterostructures: Synthesis and Application in Simultaneous Photocatalytic Oxidation of Organic Dyes and Reduction of Cr under Visible Light[J]. Chem. Eng. J., 2014,255:394-402. doi: 10.1016/j.cej.2014.06.031

    45. [45]

      Zhou L, Zhang W, Chen L, Deng H P. Z-Scheme Mechanism of Photogenerated Carriers for Hybrid Photocatalyst Ag3PO4/g-C3N4 in Degradation of Sulfamethoxazole[J]. J. Colloid Interface Sci., 2017,487:410-417. doi: 10.1016/j.jcis.2016.10.068

    46. [46]

      Sun M, Zeng Q, Zhao X, Shao Y, Ji P G, Wang C Q, Yan T, Du B. Fabrication of Novel g-C3N4 Nanocrystals Decorated Ag3PO4 Hybrids: Enhanced Charge Separation and Excellent Visible-Light Driven Photocatalytic Activity[J]. J. Hazard. Mater., 2017,339:9-21. doi: 10.1016/j.jhazmat.2017.06.003

  • 加载中
    1. [1]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    2. [2]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    3. [3]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    9. [9]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    10. [10]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    11. [11]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    15. [15]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(4)
  • Abstract views(907)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return