Citation: Yin-Chuan WANG, Gui-Yong XIAO, Wei-Li XU, Mei-Li QI, Wen-Xi YAN, Yan-Qiu WU, Yu-Peng LÜ. Effect of Initial Calcium-Phosphorus Molar Ratio on Microstructure of Ultralong Hydroxyapatite Nanofibers[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 620-628. doi: 10.11862/CJIC.2022.074 shu

Effect of Initial Calcium-Phosphorus Molar Ratio on Microstructure of Ultralong Hydroxyapatite Nanofibers

Figures(4)

  • The nucleation and crystal growth of hydroxyapatite (HA) crystals are closely related to surfactants and the initial calcium - phosphorus molar ratio (nCa, 0/nP, 0). In this work, HA nanofibers with high flexibility and aspect ratio have been synthesized by using oleic acid as the surfactant. The effect of nCa, 0/nP, 0 on the microstructures of the as - prepared products was investigated by X - ray diffraction (XRD), FTIR, field emission scanning electron microscope (FESEM), and energy-dispersive X-ray spectra (EDS). The formation mechanisms of HA nanofibers were proposed to better explain the effect of oleic and nCa, 0/nP, 0 based on the microstructure evolution. Ultralong HA nanofibers with high crystallinity and flexibility were synthesized with nCa, 0/nP, 0=0.8 -1.2, but too high and too low nCa, 0/nP, 0 will weaken the effect of oleic acid in inducing the preferential growth of HA along the c axis, which lead to the formation of amorphous knotted or low crystalline nanoneedle bundle-like products, respectively. The preferred growth direction of HA changes from a-axis to c-axis with the decrease of nCa, 0/nP, 0, but too low nCa, 0/nP, 0 causes HA to tend to grow along the a-axis and c-axis at the same time.
  • 加载中
    1. [1]

      Lin K L, Wu C T, Chang J. Advances in Synthesis of Calcium Phosphate Crystals with Controlled Size and Shape[J]. Acta Biomater., 2014,10(10):4071-4102. doi: 10.1016/j.actbio.2014.06.017

    2. [2]

      Arcís R W, López - Macipe A, Toledano M, Osorio E, Rodríguez - Clemente R, Murtra J, Fanovich M A, Pascual C D. Mechanical Properties of Visible Light - Cured Resins Reinforced with Hydroxyapatite for Dental Restoration[J]. Dent. Mater., 2002,18(1):49-57. doi: 10.1016/S0109-5641(01)00019-7

    3. [3]

      Zhang H Q, Darvell B W. Morphology and Structural Characteristics of Hydroxyapatite Whiskers: Effect of the Initial Ca Concentration, Ca/ P Ratio and pH[J]. Acta Biomater., 2011,7(7):2960-2968. doi: 10.1016/j.actbio.2011.03.020

    4. [4]

      Paknahad A, Goudarzi M, Kucko N W, Leeuwenburgh S C, Sluys L J. Calcium Phosphate Cement Reinforced with Poly(vinyl alcohol) Fibers: An Experimental and Numerical Failure Analysis[J]. Acta Biomater., 2021,119:458-471. doi: 10.1016/j.actbio.2020.10.014

    5. [5]

      Dorner - Reisel A, Berrothb K, Neubauerb R, Nestlerc K, Marxc G, Scislod M, Müllera E, Slosarcykd A. Unreinforced and Carbon Fibre Reinforced Hydroxyapatite: Resistance Against Microabrasion[J]. J. Eur. Ceram. Soc., 2004,24(7):2131-2139. doi: 10.1016/S0955-2219(03)00373-X

    6. [6]

      Yamamoto A, Honma R, Sumita M, Hanawa T. Cytotoxicity Evaluation of Ceramic Particles of Different Sizes and Shapes[J]. J. Biomed. Mater. Res. Part A, 2004,68A(2):244-256. doi: 10.1002/jbm.a.20020

    7. [7]

      Qi M L, Huang Z N, Yao W T, Long F, Cheng M, Song B A, Banner D, Shahbazian-Yassar R, Lu Y P, Shokuhfar T. In Situ Visualization of the Superior Nanomechanical Flexibility of Individual Hydroxyapatite Nanobelts[J]. CrystEngComm, 2018,20(8):1031-1036. doi: 10.1039/C7CE01852E

    8. [8]

      Qi M L, Hi K, Huang Z N, Shahbazian-Yassar R, Xiao G Y, Lu Y P, Shokuhfar T. Hydroxyapatite Fibers: A Review of Synthesis Methods[J]. JOM, 2017,69(8):1354-1360. doi: 10.1007/s11837-017-2427-2

    9. [9]

      Costa D O, Dixon S J, Rizkalla A S. One - and Three - Dimensional Growth of Hydroxyapatite Nanowires during Sol - Gel - Hydrothermal Synthesis[J]. ACS Appl. Mater. Interfaces, 2012,4(3):1490-1499. doi: 10.1021/am201735k

    10. [10]

      Zhuang Z, Fujimi T J, Nakamura M, Yoshimurad H, Aizawa M. Development of a, b - Plane - Oriented Hydroxyapatite Ceramics as Models for Living Bones and Their Cell Adhesion Behavior[J]. Acta Biomater., 2013,9(5):6732-6740. doi: 10.1016/j.actbio.2013.02.001

    11. [11]

       

    12. [12]

      Zhang H Q, Darvell B W. Synthesis and Characterization of Hydroxyapatite Whiskers by Hydrothermal Homogeneous Precipitation Using Acetamide[J]. Acta Biomater., 2010,6(8):3216-3222. doi: 10.1016/j.actbio.2010.02.011

    13. [13]

      Yang H, Liang T X, Qi X P, Jiang H H, Deng Y Q, Wang P, Gao H C. Solvothermal Synthesis of Hydroxyapatite Nanorods with Assistance of Green Polymer[J]. Mater. Sci. Eng. C, 2017,79:9-14. doi: 10.1016/j.msec.2017.05.007

    14. [14]

      Qi C, Musetti S, Fu L H, Zhu Y J, Huang L. Biomolecule - Assisted Green Synthesis of Nanostructured Calcium Phosphates and Their Biomedical Applications[J]. Chem. Soc. Rev., 2019,48(10):2698-2737. doi: 10.1039/C8CS00489G

    15. [15]

      Mann S, Archibald D D, Didymus J M, Douglas T, Heywood B R, Meldrum F C, Reeves N J. Crystallization at Inorganic-Organic Interfaces: Biominerals and Biomimetic Synthesis[J]. Science, 1993,261(5126):1286-1292. doi: 10.1126/science.261.5126.1286

    16. [16]

      Wang X, Zhuang J, Peng Q, Li Y D. Liquid-Solid-Solution Synthesis of Biomedical Hydroxyapatite Nanorods[J]. Adv. Mater., 2006,18(15):2031-2034. doi: 10.1002/adma.200600033

    17. [17]

      Wang Y C, Wang Z C, Xiao G Y, Xu W L, Wang K, Jiao Y, Qi M L, Lu Y P. Investigation on [OH-]-Responsive Systems for Construction of One-Dimensional Hydroxyapatite via a Solvothermal Method[J]. New J. Chem., 2021,45(1):358-364. doi: 10.1039/D0NJ04476H

    18. [18]

      Tao W, Wang J, Parak W J, Farokhzad O C, Shi J J. Nanobuffering of pH - Responsive Polymers: A Known but Sometimes Overlooked Phenomenon and Its Biological Applications[J]. ACS Nano, 2019,13(5):4876-4882. doi: 10.1021/acsnano.9b01696

    19. [19]

      Holzwarth U, Gibson N. The Scherrer Equation Versus the'Debye - Scherrer Equation'[J]. Nat. Nanotechnol., 2011,6:534-534. doi: 10.1038/nnano.2011.145

    20. [20]

      Ma B, Zhuang S, Liu F, Duan J Z, Wang S C, Han J, Sang Y H, Yu X Q, Li D, Tang W, Ge S H, Liu H. One - Dimensional Hydroxyapatite Nanostructures with Tunable Length for Efficient Stem Cell Differentiation Regulation[J]. ACS Appl. Mater. Interfaces, 2017,9(39):33717-33727. doi: 10.1021/acsami.7b13313

    21. [21]

      Landi E, Tampieri A, Celotti G, Sprio S. Densification Behaviour and Mechanisms of Synthetic Hydroxyapatites[J]. J. Eur. Ceram. Soc., 2000,20(14):2377-2387.

    22. [22]

      Chen H, Leng S. Rapid Synthesis of Hollow Nano-Structured Hydroxyapatite Microspheres via Microwave Transformation Method Using Hollow CaCO3 Precursor Microspheres[J]. Ceram. Int., 2015,41(2):2209-2213. doi: 10.1016/j.ceramint.2014.10.021

    23. [23]

      Acheson J G, Robinson L, McKillop S, Wilson S, McIvor M J, Meenan B J, Boyd A R. TOFSIMS and XPS Characterisation of Strontium in Amorphous Calcium Phosphate Sputter Deposited Coatings[J]. Mater. Charact., 2021,171110739. doi: 10.1016/j.matchar.2020.110739

    24. [24]

      Sindu P A, Kolanthai E, Suganthi R V, Arul T K, Manikandand E, Catalani L H, Kalkura S N. Green Synthesis of Si - Incorporated Hydroxyapatite Using Sodium Metasilicate as Silicon Precursor and In Vitro Antibiotic Release Studies[J]. J. Photochem. Photobiol. B, 2017,175:163-172. doi: 10.1016/j.jphotobiol.2017.08.030

    25. [25]

      Xu Z, Hu G. Simple and Green Synthesis of Monodisperse Silver Nanoparticles and Surface - Enhanced Raman Scattering Activity[J]. RSC Adv., 2012,2(30):11404-11409. doi: 10.1039/c2ra21745g

    26. [26]

      Yuan Y, Liu C, Zhang Y, Shan X Q. Sol-Gel Auto-Combustion Synthesis of Hydroxyapatite Nanotubes Array in Porous Alumina Template[J]. Mater. Chem. Phys., 2008,112(1):275-280. doi: 10.1016/j.matchemphys.2008.05.068

    27. [27]

      Ruikang T, George H N. New Mechanism For the Dissolution of Sparingly Soluble Minerals[J]. Pure Appl. Chem., 2002,74(10):1851-1857. doi: 10.1351/pac200274101851

    28. [28]

      Chen F, Zhu Y J. Large - Scale Automated Production of Highly Ordered Ultralong Hydroxyapatite Nanowires and Construction of Various Fire - Resistant Flexible Ordered Architectures[J]. ACS Nano, 2016,10(12):11483-11495. doi: 10.1021/acsnano.6b07239

    29. [29]

      He K, Sawczyk M, Liu C, Yuan Y F, Song B A, Deivanayagam R, Nie A, Hu X B, Dravid V P, Lu J, Sukotjo C, Lu Y P, Král P, Shokuhfar T, Shahbazian-Yassar R. Revealing Nanoscale Mineralization Pathways of Hydroxyapatite Using In Situ Liquid Cell Transmission Electron Microscopy[J]. Sci. Adv., 2020,6(47)eaaz7524. doi: 10.1126/sciadv.aaz7524

    30. [30]

      Harding I S, Rashid N, Hing K A. Surface Charge and the Effect of Excess Calcium Ions on the Hydroxyapatite Surface[J]. Biomaterials, 2005,26(34):6818-6826. doi: 10.1016/j.biomaterials.2005.04.060

    31. [31]

      Wang W T, Xue Z Y, Wang R H, Wang X, Xu D G. Molecular Dynamics Exploration of the Growth Mechanism of Hydroxyapatite Nanoparticles Regulated by Glutamic Acid[J]. J. Phys. Chem. B, 2021,125(19):5078-5088. doi: 10.1021/acs.jpcb.1c02447

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    7. [7]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    10. [10]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    11. [11]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    12. [12]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    13. [13]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    14. [14]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    15. [15]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    20. [20]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

Metrics
  • PDF Downloads(24)
  • Abstract views(1381)
  • HTML views(429)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return