Citation: Zhong-Zheng MIAO. Theoretical Study on Condition Control and Photoelectric Properties of Graphene Adsorbing TiCl4 Molecule[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 528-534. doi: 10.11862/CJIC.2022.048 shu

Theoretical Study on Condition Control and Photoelectric Properties of Graphene Adsorbing TiCl4 Molecule

  • Corresponding author: Zhong-Zheng MIAO, mzz0415@126.com
  • Received Date: 19 November 2021
    Revised Date: 2 January 2022

Figures(4)

  • To study the influencing factors and photoelectric properties of graphene adsorbed by TiCl4 molecules, and explore the possibility of the composite applied to sensors and transparent conductive films, first-principles calculations and Monte Carlo methods were carried out to study the adsorption performance and photoelectric properties of TiCl4 gas molecules on the surface of graphene. The results reveal that: (1) graphene has a strong physical adsorption effect on TiCl4 gas molecules. Cl atoms, sitting at the top of carbon atoms farthest from the center of mass is the most stable configuration. (2) The increase in temperature is not conducive to the adsorption of TiCl4 gas molecules, but the increase of gas fugacity is conducive. The temperature should be maintained near the boiling point of TiCl4 and the pressure of the gas be increased when TiCl4 gas molecules are inserted into graphite/double-layer graphene/multilayer graphene. (3) The adsorption of TiCl4 regulates the electronic structure of graphene, significantly improves the density of states near the Fermi level, reduces the pseudo-energy gap, and effectively improves the conductivity. (4) In the visible region, the adsorption of TiCl4 has little effect on the absorption performance of the system, and does not affect the optical properties of the transparent conductive film while improving the conductivity of the film.
  • 加载中
    1. [1]

      Dresselhaus M S, Dresselhaus G. Intercalation Compounds of Graphite[J]. Adv. Phys., 2002,51(1):1-186. doi: 10.1080/00018730110113644

    2. [2]

      Hwang T, Cho M, Cho K. Interlayer Design of Pillared Graphite by Na-Halide Cluster Intercalation for Anode Materials of Sodium-Ion Batteries[J]. ACS Omega, 2021,6(14):9492-9499. doi: 10.1021/acsomega.0c06199

    3. [3]

      Li X J, Lei Y, Qin L, Han D, Wang H W, Zhai D Y, Li B H, Kang F Y. Mildly-Expanded Graphite with Adjustable Interlayer Distance as High-Performance Anode for Potassium-Ion Batteries[J]. Carbon, 2021,172(4):200-206.

    4. [4]

      Geng X M, Guo Y F, Li D F, Li W W, Zhu C, Wei X F, Chen M L, Gao S, Qiu S Q, Gong Y P, Wu L Q, Long M S, Pan G B, Liu L W. Interlayer Catalytic Exfoliation Realizing Scalable Production of Large-Size Pristine Few-Layer Graphene[J]. Sci. Rep., 2013,3(1)1134. doi: 10.1038/srep01134

    5. [5]

      Miao Z Z, Li X L, Zhang X H, Zhou M, Ning J, Miao L X, Qiu X Y, Jin M H, Zhi L J. Reversible Functionalization: A Scalable Way to Deliver the Structure and Interface of Graphene for Different Macro Applications[J]. Adv. Mater. Interfaces, 2016,31500842. doi: 10.1002/admi.201500842

    6. [6]

      Fu W J, Jim K, Steven H O, Schwartz V, Liang C D. Low-Temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-intercalated Graphite Compound[J]. Chem. Commun., 2011,47:5265-5267. doi: 10.1039/c1cc10508f

    7. [7]

      Smith R P, Weller T E, Howard C A, Dean M, Rahnejat K, Saxena S, Ellerby M. Superconductivity in Graphite Intercalation Compounds[J]. Physica C, 2015,514(15):50-58.

    8. [8]

      Dominique J W, Thomas H B, Tim B, Bøggild P, Craciun M, Russo S. Unforeseen High Temperature and Humidity Stability of FeCl3 Intercalated Few Layer Graphene[J]. Sci. Rep., 2015,57609. doi: 10.1038/srep07609

    9. [9]

      Zhao W J, Tan P H, Zhang J, Liu J. Charge Transfer and Optical Phonon Mixing in Few-Layer Graphene Chemically Doped with Sulfuric Acid[J]. J. Phys. Rev. B, 2010,82245423. doi: 10.1103/PhysRevB.82.245423

    10. [10]

      Miao Z Z, Li X L, Zhi L J. Controlled Functionalization of Graphene with Carboxyl Moieties toward Multiple Applications[J]. RSC Adv., 2016,6:58561-58565. doi: 10.1039/C6RA12470D

    11. [11]

      Zhou W C, Patrick S H L. First-Principles Understanding of the Staging Properties of the Graphite Intercalation Compounds towards Dual-Ion Battery Applications[J]. ACS Omega, 2020,5(29):18289-18300. doi: 10.1021/acsomega.0c01950

    12. [12]

      Xu Qi, Wang Q W, Chen D Q, Zhong Y J, Wu Z, Song Y, Wang G K, Liu Y X, Zhong B H, Guo X D. Silicon/Graphite Composite Anode with Constrained Swelling and a Stable Solid Electrolyte Interphase Enabled by Spent Graphite[J]. Green Chem., 2021,23:4531-4539. doi: 10.1039/D1GC00630D

    13. [13]

      Raya S S, Ansari A S, Shong B. Adsorption of Gas Molecules on Graphene, Silicene, and Germanene: A Comparative First-Principles Study[J]. Surf. Interfaces, 2021,24101054. doi: 10.1016/j.surfin.2021.101054

    14. [14]

      WANG Y R, WANG L F, YUAN D Y, KOMG Y Y, MA S H. Adsorption of Molecular H2S on Monolayer Ti2CO2: A First-Principles Study[J]. Chinese Journal of Atomic and Molecular Physics, 2019,36(4):568-573. doi: 10.3969/j.issn.1000-0364.2019.04.007

    15. [15]

      Huang B, Li Z Y, Liu Z R, Zhou G, Hao S G, Wu J, Gu B L, Duan W H. Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nano-Scale Molecule Sensor[J]. J. Phys. Chem. C, 2008,112(35):13442-13446. doi: 10.1021/jp8021024

    16. [16]

      Kemp K C, Humaira S, Muhammad S, Le N H, Mahesh K, Chandra V, Kim K S. Environmental Applications Using Graphene Composites: Water Remediation and Gas Adsorption[J]. Nanoscale, 2013,5:3149-3171. doi: 10.1039/c3nr33708a

    17. [17]

      Holzwarth N A W, Louie S G, Rabii S. Interlayer States in Graphite and in Alkali-Metal-Graphite Intercalation Compounds[J]. Phys. Rev. B, 1984,30(4):2219-2222. doi: 10.1103/PhysRevB.30.2219

    18. [18]

      Zhang C Z, Ma J M, Han F, Liu H B, Zhang F Q, Fan C L, Liu J S, Li X K. Strong Anchoring Effect of Ferric Chloride-Graphite Intercalation Compounds (FeCl3-Gics) with Tailored Epoxy Groups for High-Capacity and Stable Lithium Storage[J]. J. Mater. Chem. A, 2018,6:17982-17993. doi: 10.1039/C8TA06670A

    19. [19]

      Zhao W J, Tan P H, Liu J, Ferrari A. Intercalation of Few-Layer Graphite Flakes with FeCl3: Raman Determination of Fermi Level, Layer by Layer Decoupling, and Stability[J]. J. Am. Chem. Soc., 2011,133(15):5941-5946. doi: 10.1021/ja110939a

    20. [20]

      Li W B, Lin S Y, Tran N N N, Lin M F, Lin K I. Essential Geometric and Electronic Properties in Stage-N Graphite Alkali-Metal-Intercalation Compounds[J]. RSC Adv., 2020,10(40):23573-23581. doi: 10.1039/D0RA00639D

    21. [21]

      Yoji I, Akio W. Energetic Evaluation of Possible Stacking Structures of Li-Intercalation in Graphite Using a First-Principle Pseudopotential Calculation[J]. J. Alloys Compd., 2007,439(1/2):258-267.

    22. [22]

      Zhan D, Sun L, Ni Z H, Liu L, Fan X F, Wang Y Y, Yu T, Lam Y M, Huang W, Shen Z X. FeCl3-Based Few-Layer Graphene Intercalation Compounds: Single Linear Dispersion Electronic Band Structure and Strong Charge Transfer Doping[J]. Adv. Funct. Mater., 2010,20(20):3504-3509. doi: 10.1002/adfm.201000641

    23. [23]

      Zhang M J, Wu X J, Yang G, Qian N, Wei F, Zhao C, Liu J Y, Deng K, Liu W. Tritium Adsorption and Desorption on/from Nuclear Graphite Edge by a First-Principles Study[J]. Carbon, 2021,173:676-686. doi: 10.1016/j.carbon.2020.11.014

    24. [24]

      Guo J J, Zhu S M, Chen Z X, Li Y, Yu Z, Liu Q L, Li J B, Feng C, Zhang D. Sonochemical Synthesis of TiO2 Nanoparticles on Graphene for Use as Photocatalyst[J]. Ultrason. Sonochem., 2011,18(5):1082-1090. doi: 10.1016/j.ultsonch.2011.03.021

    25. [25]

      Sahithi A, Sumithra K. New Insights in the Electronic Structure of Doped Graphene on Adsorption with Oxides of Nitrogen[J]. Mater. Today Commun., 2021,27102417. doi: 10.1016/j.mtcomm.2021.102417

    26. [26]

      Xia K S, Tian X L, Fei S X, You K. Hierarchical Porous Graphene-Based Carbons Prepared by Carbon Dioxide Activation and Their Gas Adsorption Properties[J]. Int. J. Hydrogen Energy, 2014,39(21):11047-11054. doi: 10.1016/j.ijhydene.2014.05.059

    27. [27]

      Yan W Q, Liu Y M, Shao G F, Zhu K M, Cui S, Wang W, Shen X D. Chemical Surface Adsorption and Trace Detection of Alcohol Gas in Graphene Oxide-Based Acid-Etched SnO2 Aerogels[J]. ACS Appl. Mater. Interfaces, 2021,13(17):20467-20478. doi: 10.1021/acsami.1c00302

    28. [28]

      JIANG Y F, WU H Y, CHU X F, LIANG S M, ZHANG J, GAO Q, WANG Y. Preparation and Gas Sensing Properties of Graphene/SnO2 by Solvothermal Method[J]. Chinese J. Inorg. Chem., 2019,35(7):1163-1168.  

    29. [29]

      Zhao Y J, Chen Y H, Xu W H, Zhang M L, Zhang C R. First Principles Study on Methane Adsorption Performance of Ti-Modified Porous Graphene[J]. Phys. Status Solidi B, 2021,258(11)2100168. doi: 10.1002/pssb.202100168

    30. [30]

      De ji, Kaur N, Choudhary B C, Sharma R K. Carbon-Dioxide Gas Sensor Using Co-doped Graphene Nanoribbon: A First Principle DFT Study[J]. Mater. Today: Proc., 2021,45(6):5023-5028.

    31. [31]

      Crowther A C, Ghassaei A, Jung N, Louis E B. Strong Charge-Transfer Doping of 1 to 10 Layer Graphene by NO2[J]. ACS Nano, 2012,6(2):1865-1875. doi: 10.1021/nn300252a

    32. [32]

      Pham T, Forrest K, Hogan A, Mclaughlin K, Belof J, Eckert J, Space B. Simulations of Hydrogen Sorption in rht-MOF-1: Identifying the Binding Sites through Explicit Polarization and Quantum Rotation Calculations[J]. J. Mater. Chem. A, 2014,2:2088-2100. doi: 10.1039/C3TA14591C

    33. [33]

      YUAN W H, BI S H, CAO M S. Formaldehyde Molecule Adsorbed on Graphene: A First-Principles Study[J]. Materials Review, 2015,29(18):156-159.  

    34. [34]

      Barrios V, José E, Naumis G. Pseudo-Gap Opening and Dirac Point Confined States in Doped Graphene[J]. Solid State Commun., 2013,162:23-27. doi: 10.1016/j.ssc.2013.03.006

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    13. [13]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    14. [14]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    17. [17]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

Metrics
  • PDF Downloads(4)
  • Abstract views(854)
  • HTML views(170)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return