Citation: Jing HUANG, Xin-Yu TIAN, Lan YANG, Xiao-Miao FENG. Mn-MOF Derived Mn2O3 Micromotors Applied to Removal of Methyl Blue in Water[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 153-160. doi: 10.11862/CJIC.2022.008 shu

Mn-MOF Derived Mn2O3 Micromotors Applied to Removal of Methyl Blue in Water

  • Corresponding author: Xiao-Miao FENG, iamxmfeng@njupt.edu.cn
  • Received Date: 9 July 2021
    Revised Date: 28 September 2021

Figures(6)

  • A Mn-based metal-organic framework (Mn-MOF) was selected as the precursors to prepare the Mn-MOF derivative (Mn2O3) microspheres. The Mn2O3 microspheres had a homogenous size of ca. 4 μm, with perfect sphere morphology, rough surface, good crystallinity and high yield. At the same time, the movement behavior of Mn2O3 micromotors under different conditions and the degradation properties of methyl blue (MB) were studied. As-prepared Mn2O3 micromotors had excellent autonomous movement ability, and their moving speed can reach 81.32 μm·s-1 in 10% H2O2 solution. Experimental results show that with the addition of H2O2, the Mn2O3 micromotors can effectively remove MB through degradation within 5 min.
  • 加载中
    1. [1]

      Guix M, Weiz S M, Schmidt O G, Medina-Sánchez M. Self-Propelled Micro/Nanoparticle Motors[J]. Part. Part. Syst. Charact., 2018,35(2)1700382. doi: 10.1002/ppsc.201700382

    2. [2]

      Wang Q L, Dong R F, Yang Q X, Wang J J, Xu S Y, Cai Y P. Highly Efficient Visible-Light-Driven Oxygen-Vacancy-Based Cu2+1O Micromotors with Biocompatible Fuels[J]. Nanoscale Horiz., 2020,5(2):325-330. doi: 10.1039/C9NH00592G

    3. [3]

      Cai L J, Wang H, Yu Y R, Bian F K, Wang Y, Shi K Q, Ye F F, Zhao Y J. Stomatocyte Structural Color Barcode Micromotors for Multiplex Assays[J]. Natl. Sci. Rev., 2020,7(3):644-651. doi: 10.1093/nsr/nwz185

    4. [4]

      Wang D L, Gao C Y, Wang W, Sun M M, Guo B, Xie H, He Q. Shape-Transformable, Fusible Rodlike Swimming Liquid Metal Nanomachine[J]. ACS Nano, 2018,12(10):10212-10220. doi: 10.1021/acsnano.8b05203

    5. [5]

      Yoshizumi Y, Honegger T, Berton K, Suzuki H, Peyrade D. Trajectory Control of Self - Propelled Micromotors Using AC Electrokinetics[J]. Small, 2015,11(42):5630-5635. doi: 10.1002/smll.201501557

    6. [6]

      Wang H, Liang Y L, Gao W, Dong R F, Wang C Y. Emulsion Hydrogel Soft Motor Actuated by Thermal Stimulation[J]. ACS Appl. Mater. Interfaces, 2017,9(49):43211-43219. doi: 10.1021/acsami.7b08661

    7. [7]

      Liu W J, Ge H B, Ding X Y, Lu X L, Zhang Y N, Gu Z W. Cubic Nano -Silver-Decorated Manganese Dioxide Micromotors: Enhanced Propulsion and Antibacterial Performance[J]. Nanoscale, 2020,12(38):19655-19664. doi: 10.1039/D0NR06281B

    8. [8]

      Schattling P S, Ramos - Docampo M A, Salgueiriño V, Städler B. Double - Fueled Janus Swimmers with Magnetotactic Behavior[J]. ACS Nano, 2017,11(4):3973-3983. doi: 10.1021/acsnano.7b00441

    9. [9]

      Maria-Hormigos R, Jurado-Sánchez B, Escarpa A. Surfactant-Free β-Galactosidase Micromotors for "On - The - Move" Lactose Hydrolysis[J]. Adv. Funct. Mater., 2018,28(25)1704256. doi: 10.1002/adfm.201704256

    10. [10]

      Ma X, Hortelao A C, Miguel - López A, Sánchez S. Bubble - Free Propulsion of Ultrasmall Tubular Nanojets Powered by Biocatalytic Reactions[J]. J. Am. Chem. Soc., 2016,138(42):13782-13785. doi: 10.1021/jacs.6b06857

    11. [11]

      Ma X, Jang S, Popescu M N, Uspal W E, Miguel-Lopez A, Hahn K, Kim D P, Sánchez S. Reversed Janus Micro/Nanomotors with Internal Chemical Engine[J]. ACS Nano, 2016,10(9):8751-8759. doi: 10.1021/acsnano.6b04358

    12. [12]

      Moo J G S, Wang H, Pumera M. Influence of pH on the Motion of Catalytic Janus Particles and Tubular Bubble - Propelled Micromotors[J]. Chem. Eur. J., 2016,22(1):355-360. doi: 10.1002/chem.201503473

    13. [13]

      Wei X L, Beltrán-Gastélum M, Karshalev E, de Ávila B E F, Zhou J R, Ran D N, Angsantikul P, Fang R H, Wang J, Zhang L F. Biomimetic Micromotor Enables Active Delivery of Antigens for Oral Vaccination[J]. Nano Lett., 2019,19(3):1914-1921. doi: 10.1021/acs.nanolett.8b05051

    14. [14]

      Zhou M F, Hou T, Li J X, Yu S S, Xu Z J, Yin M, Wang J, Wang X L. Self-Propelled and Targeted Drug Delivery of Poly(aspartic acid)/Iron-Zinc Microrocket in the Stomach[J]. ACS Nano, 2019,13(2)1324.

    15. [15]

      Chen B R, Sun W H, Kitchaev D A, Mangum J S, Thampy V, Garten L M, Ginley D S, Gorman B P, Stone K H, Ceder G, Toney M F, Schelhas L T. Understanding Crystallization Pathways Leading to Manganese Oxide Polymorph Formation[J]. Nat. Commun., 2018,92553. doi: 10.1038/s41467-018-04917-y

    16. [16]

      Peng X, Zhu H L, Chen H J, Feng X M, Liu R Q, Huang Z D, Shen Q M, Ma Y W, Wang L H. Eco-Friendly Porous Iron(Ⅲ) Oxide Micromotors for Efficient Wastewater Cleaning[J]. New J. Chem., 2019,43(32):12594-12600. doi: 10.1039/C9NJ02592H

    17. [17]

      Keller S, Teora S P, Hu G X, Nijemeisland M, Wilson D A. High-Throughput Design of Biocompatible Enzyme-Based Hydrogel Microparticles with Autonomous Movement[J]. Angew. Chem. Int. Ed., 2018,57(31):9814-9817. doi: 10.1002/anie.201805661

    18. [18]

      Novotný F, Plutnar J, Pumera M. Plasmonic Self-Propelled Nanomotors for Explosives Detection via Solution -Based Surface Enhanced Raman Scattering[J]. Adv. Funct. Mater., 2019,29(33)1903041. doi: 10.1002/adfm.201903041

    19. [19]

      Wang D L, Gao C Y, Zhou C, Lin Z H, He Q. Leukocyte MembraneCoated Liquid Metal Nanoswimmers for Actively Targeted Delivery and Synergistic Chemophotothermal Therapy. Research, 2020: UNSP 3676954

    20. [20]

      Jurado-Sánchez B, Wang J. Micromotors for Environmental Applications: A Review[J]. Environ. Sci.-Nano, 2018,5(7):1530-1544. doi: 10.1039/C8EN00299A

    21. [21]

      Li J X, Gao W, Dong R F, Pei A, Sattayasamitsathit S, Wang J. Nanomotor Lithography[J]. Nat. Commun., 2014,55026. doi: 10.1038/ncomms6026

    22. [22]

      Neoh C H, Noor Z Z, Mutamim N S A, Lim C K. Green Technology in Wastewater Treatment Technologies: Integration of Membrane Bioreactor with Various Wastewater Treatment Systems[J]. Chem. Eng. J., 2016,283:582-594. doi: 10.1016/j.cej.2015.07.060

    23. [23]

      Liang C Y, Zhan C, Zeng F Y, Xu D D, Wang Y, Zhao W W, Zhang J H, Guo J H, Feng H H, Ma X. Bilayer Tubular Micromotors for Simultaneous Environmental Monitoring and Remediation[J]. ACS Appl. Mater. Interfaces, 2018,10(41):35099-35107. doi: 10.1021/acsami.8b10921

    24. [24]

      Ma W, Wang K, Pan S H, Wang H. Iron-Exchanged Zeolite Micromotors for Enhanced Degradation of Organic Pollutants[J]. Langmuir, 2020,36(25):6924-6929. doi: 10.1021/acs.langmuir.9b02137

    25. [25]

      Shi H Q, Chen X, Liu K, Ding X Y, Liu W J, Xu M L. Heterogeneous Fenton Ferroferric Oxide-Reduced Graphene Oxide-Based Composite Microjets for Efficient Organic Dye Degradation[J]. J. Colloid Interface Sci., 2020,572:39-47. doi: 10.1016/j.jcis.2020.03.073

    26. [26]

      Mou F Z, Pan D, Chen C R, Gao Y R, Xu L L, Guan J G. Magnetically Modulated Pot - like MnFe2O4 Micromotors: Nanoparticle Assembly Fabrication and Their Capability for Direct Oil Removal[J]. Adv. Funct. Mater., 2015,25(39):6173-6181. doi: 10.1002/adfm.201502835

    27. [27]

      Baptista - Pires L, Orozco J, Guardia P, Merkoçi A. Architecting Graphene Oxide Rolled - Up Micromotors: A Simple Paper - Based Manufacturing Technology[J]. Small, 2018,14(3)1702746. doi: 10.1002/smll.201702746

    28. [28]

      Villa K, Parmar J, Vilela D, Sanchez S. Metal-Oxide-Based Microjets for the Simultaneous Removal of Organic Pollutants and Heavy Metals[J]. ACS Appl. Mater. Interfaces, 2018,10(24):20478-20486. doi: 10.1021/acsami.8b04353

    29. [29]

      Hou T, Yu S, Zhou M F, Wu M, Liu J, Zheng X L, Li J X, Wang J, Wang X L. Effective Removal of Inorganic and Organic Heavy Metal Pollutants with Poly(amino acid) - Based Micromotors[J]. Nanoscale, 2020,12(8):5227-5232. doi: 10.1039/C9NR09813E

    30. [30]

      Khezri B, Pumera M. Metal-Organic Frameworks Based Nano/Micro/Millimeter-Sized Self-Propelled Autonomous Machines[J]. Adv. Mater., 2019,31(14)e1806530. doi: 10.1002/adma.201806530

    31. [31]

      Ikezoe Y, Washino G, Uemura T, Kitagawa S, Matsui H. Autonomous Motors of a Metal-Organic Framework Powered by Reorganization of Self-Assembled Peptides at Interfaces[J]. Nat. Mater., 2012,11:1081-1085. doi: 10.1038/nmat3461

    32. [32]

      Chen H J, Zhu H L, Huang J, Feng X M. Shape-Controlled Catalytic ZIF - 67 Micromotors for Dye Adsorption[J]. J. Mater. Eng. Perform., 2020,29:6196-6200. doi: 10.1007/s11665-020-05091-3

    33. [33]

      Zhang H J, Qi S D, Niu X Y, Hu J, Ren C L, Chen H L, Chen X G. Metallic Nanoparticles Immobilized in Magnetic Metal - Organic Frameworks: Preparation and Application as Highly Active, Magnetically Isolable and Reusable Catalysts[J]. Catal. Sci. Technol., 2014,4(9):3013-3024. doi: 10.1039/C4CY00072B

    34. [34]

      Zou G Q, Hou H S, Cao X Y, Ge P, Zhao G G, Yin D L, Ji X B. 3D Hollow Porous Carbon Microspheres Derived from Mn - MOFs and Their Electrochemical Behavior for Sodium Storage[J]. J. Mater. Chem. A, 2017,5(45):23550-23558. doi: 10.1039/C7TA08352A

    35. [35]

      Zhang X D, Lv X T, Bi F K, Lu G, Wang Y X. Highly Efficient Mn2O3 Catalysts Derived from Mn-MOFs for Toluene Oxidation: The Influence of MOFs Precursors[J]. Mol. Catal., 2020,482110701. doi: 10.1016/j.mcat.2019.110701

    36. [36]

      Cao H Q, Wu X M, Wang G H, Yin J F, Yin G, Zhang F, Liu J K. Biomineralization Strategy to α-Mn2O3 Hierarchical Nanostructures[J]. J. Phys. Chem. C, 2012,116(39):21109-21115. doi: 10.1021/jp306984c

    37. [37]

      Yao Y Y, Cai Y M, Lu F, Wei F Y, Wang X Y, Wang S B. Magnetic Recoverable MnFe2O4 and MnFe2O4-Graphene Hybrid as Heterogeneous Catalysts of Peroxymonosulfate Activation for Efficient Degradation of Aqueous Organic Pollutants[J]. J. Hazard. Mater., 2014,270:61-70. doi: 10.1016/j.jhazmat.2014.01.027

    38. [38]

      Yang W N, Li J, Xu Z P, Yang J, Liu Y, Liu L H. An Eu-MOF/EDTA - NiAl - CLDH Fluorescent Micromotor for Sensing and Removal of Fe3+ From Water[J]. J. Mater. Chem. C, 2019,7(33):10297-10308. doi: 10.1039/C9TC03328A

    39. [39]

      Wang R Q, Guo W L, Li X H, Liu Z H, Liu H, Ding S Y. Highly Efficient MOF-Based Self-Propelled Micromotors for Water Purification[J]. RSC Adv., 2017,7(67):42462-42467. doi: 10.1039/C7RA08127H

  • 加载中
    1. [1]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    2. [2]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    3. [3]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    4. [4]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    5. [5]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    6. [6]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    7. [7]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    8. [8]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    9. [9]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    10. [10]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    11. [11]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    12. [12]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    13. [13]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    14. [14]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    15. [15]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    16. [16]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    17. [17]

      Xian-Rui Meng Qian Chen Mei-Feng Wu Qiang Wu Su-Qin Wang Li-Ping Jin Fan Zhou Ren-Li Ma Jian-Ping Zou . Nano-flowers FeS/MoS2 composites as a peroxymonosulfate activator for efficient p-chlorophenol degradation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100543-100543. doi: 10.1016/j.cjsc.2025.100543

    18. [18]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    19. [19]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(12)
  • Abstract views(799)
  • HTML views(128)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return