Citation: Ying-Ying MA, Yi-Fan LIU, Shan-Shan GUO, Lu-Lu YAO, Chen-Yang HUANGFU, Wei-Rong ZHAO. Performance and Mechanism of Cu, C Co-loaded ZnO Photocatalyst for Nitrogen Fixation[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 274-284. doi: 10.11862/CJIC.2022.007 shu

Performance and Mechanism of Cu, C Co-loaded ZnO Photocatalyst for Nitrogen Fixation

  • Corresponding author: Wei-Rong ZHAO, wrzhao@vip.163.com
  • Received Date: 27 July 2021
    Revised Date: 6 October 2021

Figures(9)

  • Herein, Cu, C co-loaded ZnO photocatalyst was synthesized to promote its photocatalytic nitrogen fixation properties and overcome its disadvantages of high photoelectron-hole recombination rate, poor response to visible light and photocorrosion. The results indicated that CuCZ-3% (the weight of Cu loaded was 3% of the weight of ZnO) photocatalyst achieved the highest nitrogen fixation rate (4.96 mmol·gcat-1·h-1), which was 8.10 times higher than that of ZnO (0.612 mmol·gcat-1·h-1) and 1.65 times higher than that of CZnO (C-loaded ZnO, 3.00 mmol·gcat-1·h-1). To explore possible mechanism for the promoted nitrogen fixation efficiency of CuCZ photocatalyst, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), photoluminescence spectroscopy (PL), and electrochemical impedance spectroscopy (EIS) were applied. The results indicated that the interfacial charge transfer mechanism induced by the transition metal Cu and the electronic bridging function of C enhanced nitrogen fixation efficiency and inhibited photoelectron-hole recombination of ZnO photocatalyst. CuCZ-3% photocatalyst exhibited excellent stability with the nitrogen fixation rate ranged between 4.61 and 4.96 mmol·gcat-1·h-1 in four cycles. The main reason is that the coating effect of C weakens the photocorrosion of CuCZ photocatalyst.
  • 加载中
    1. [1]

      Feng Y L, Zhang Z S, Zhao K, Lin S L, Li H, Gao X. Photocatalytic Nitrogen Fixation: Oxygen Vacancy Modified Novel Micro-Nanosheet Structure Bi2O2CO3 with Band Gap Engineering[J]. J. Colloid Interface Sci., 2021,583:499-509. doi: 10.1016/j.jcis.2020.09.089

    2. [2]

      CHEN Q, ZHOU Y, ZHU J X, LIANG T T, HUANG R B, CHEN A M. Photocatalytic Synthesis of Ammomia over Fe2O3/ZnO with Rich Surface Oxygen Vacancy[J]. Chinese J. Inorg. Chem., 2020,36(2):426-434.  

    3. [3]

      Zhejiang University. A Method for Photocatalytic Forliar Fertilization: CN202010402020.7. 2020-08-14.

    4. [4]

      Liu W, Wang M L, Xu C X, Chen S F. Facile Synthesis of g-C3N4/ZnO Composite with Enhanced Visible Light Photooxidation and Photoreduction Properties[J]. Chem. Eng. J., 2012,209:386-393. doi: 10.1016/j.cej.2012.08.033

    5. [5]

      AI S Y, JIN L T, ZHOU J, LU F S. Preparation and Photocatalytic Property of ZnO Nanorods with Uniform Morphology[J]. Chinese J. Inorg. Chem., 2005,21(2):270-272. doi: 10.3321/j.issn:1001-4861.2005.02.024 

    6. [6]

      Duan Y L, Ma J, Dai J N, Qiang L S, Xue J Q. Morphology Engineering of ZnO Nanostructures for Enhanced Photocatalytic Efficiency of In(OH)3/ZnO Nanocomposite[J]. Appl. Surf. Sci., 2021,535:147657-147666. doi: 10.1016/j.apsusc.2020.147657

    7. [7]

      Jang E S, Won J H, Hwang S J, Choy J H. Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity[J]. Adv. Mater., 2006,18(24):3309-3312. doi: 10.1002/adma.200601455

    8. [8]

      CHEN Y, YANG X Y, ZHANG P, LIU D S, GUI J Z. Noble Metal-Supported Rod-like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys.-Chim. Sin., 2017,33(10):2082-2091. doi: 10.3866/PKU.WHXB201705176

    9. [9]

      ZHONG W, XIA Y F, ZHAI H L, GAO Y. Preparation by Co-precipitation Method and Photocatalytic Performances on the Degradation of Dyes of Ce3+-Doped Nano-ZnO[J]. Chinese J. Inorg. Chem., 2020,36(1):40-52.  

    10. [10]

      Shekofteh-Gohari M, Habibi-Yangjeh A, Abitorabi M, Rouhi A. Magnetically Separable Nanocomposites Based on ZnO and Their Applications in Photocatalytic Processes: A Review[J]. Crit. Rev. Env. Sci. Technol., 2018,48(10/12):806-857.

    11. [11]

      Li B X, Liu T X, Wang Y F, Wang Z F. ZnO/Graphene-Oxide Nanocomposite with Remarkably Enhanced Visible-Light-Driven Photocatalytic Performance[J]. J. Colloid Interface Sci., 2012,377:114-121. doi: 10.1016/j.jcis.2012.03.060

    12. [12]

      Kumar S G, Rao K S R K. Comparison of Modification Strategies Towards Enhanced Charge Carrier Separation and Photocatalytic Degradation Activity of Metal Oxide Semiconductors (TiO2, WO3 and ZnO)[J]. Appl. Surf. Sci., 2017,391:124-148. doi: 10.1016/j.apsusc.2016.07.081

    13. [13]

      Ansari S A, Khan M M, Ansari M O, Lee J, Cho M H. Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag-ZnO Nanocomposite[J]. J. Phys. Chem. C, 2013,117(51):27023-27030. doi: 10.1021/jp410063p

    14. [14]

      Kumar S, Baruah A, Tonda S, Kumar B, Shanker V, Sreedhar B. Cost-Effective and Eco-Friendly Synthesis of Novel and Stable N-Doped ZnO/g-C3N4 Core-Shell Nanoplates with Excellent Visible-Light Responsive Photocatalysis[J]. Nanoscale, 2014,6(9):4830-4842. doi: 10.1039/c3nr05271k

    15. [15]

      Ahmad I, Akhtar M S, Ahmed E, Ahmad M, Naz M Y. Lu Modified ZnO/CNTs Composite: A Promising Photocatalyst for Hydrogen Evolution under Visible Light Illumination[J]. J. Colloid Interface Sci., 2021,584:182-192. doi: 10.1016/j.jcis.2020.09.116

    16. [16]

      Hezam A, Wang J, Drmosh Q A, Karthik P, Bajiri M A, Namratha K, Zare M, Lakshmeesha T R, Shivanna S, Cheng C, Neppolian B, Byrappa K. Rational Construction of Plasmonic Z-Scheme Ag-ZnO-CeO2 Heterostructures for Highly Enhanced Solar Photocatalytic H2 Evolution[J]. Appl. Surf. Sci., 2021,541:1-11.

    17. [17]

      He Y M, Wang Y, Zhang L H, Teng B T, Fan M H. High-Efficiency Conversion of CO2 to Fuel over ZnO/g-C3N4 Photocatalyst[J]. Appl. Catal. B, 2015,168:1-8.

    18. [18]

      Zhang P, Li B B, Zhao Z B, Yu C, Hu C, Wu S J, Qiu J S. Furfural-Induced Hydrothermal Synthesis of ZnO@C Gemel Hexagonal Microrods with Enhanced Photocatalytic Activity and Stability[J]. ACS Appl. Mater. Interfaces, 2014,6(11):8560-8566. doi: 10.1021/am501423j

    19. [19]

      Zhang P, Yang X Y, Jin Z Z, Gui J Z, Tan R, Qiu J S. Insight into the Impact of Surface Hydrothermal Carbon Layer on Photocatalytic Performance of ZnO Nanowire[J]. Appl. Catal. A, 2019,583117145. doi: 10.1016/j.apcata.2019.117145

    20. [20]

      Ramirez A E, Montero-Munoz M, Lopez L L, Ramos-Ibarra J E, Coaquira J A H, Heinrichs B, Paez C A. Significantly Enhancement of Sunlight Photocatalytic Performance of ZnO by Doping with Transition Metal Oxides[J]. Sci. Rep., 2021,11(1):2804-2804. doi: 10.1038/s41598-020-78568-9

    21. [21]

      Lam S M, Sin J C, Abdullah A Z, Mohamed A R. Transition Metal Oxide Loaded ZnO Nanorods: Preparation, Characterization and Their UV-Vis Photocatalytic Activities[J]. Sep. Purif. Technol., 2014,132:378-387. doi: 10.1016/j.seppur.2014.05.043

    22. [22]

      Acedo-Mendoza A G, Infantes-Molina A, Vargas-Hernandez D, Chavez-Sanchez C A, Rodriguez-Castellon E, Tanori-Cordova J C. Photodegradation of Methylene Blue and Methyl Orange with CuO Supported on ZnO Photocatalysts: The Effect of Copper Loading and Reaction Temperature[J]. Mater. Sci. Semicond. Process., 2020,119105257. doi: 10.1016/j.mssp.2020.105257

    23. [23]

      Liu Z, Bai H, Xu S, Sun D D. Hierarchical CuO/ZnO "Corn-like" Architecture for Photocatalytic Hydrogen Generation[J]. Int. J. Hydrogen Energy, 2011,36(21):13473-13480. doi: 10.1016/j.ijhydene.2011.07.137

    24. [24]

      Ding Z, Wang S, Chang X, Wang D H, Zhang T H. Nano-MOF@Defected Film C3N4 Z-Scheme Composite for Visible-Light Photocatalytic Nitrogen Fixation[J]. RSC Adv., 2020,10(44):26246-26255. doi: 10.1039/D0RA03562A

    25. [25]

      Vaiano V, Matarangolo M, Murcia J J, Rojas H, Navio J A, Hidalgo M C. Enhanced Photocatalytic Removal of Phenol from Aqueous Solutions Using ZnO Modified with Ag[J]. Appl. Catal. B, 2018,225:197-206. doi: 10.1016/j.apcatb.2017.11.075

    26. [26]

      Kaviyarasu K, Magdalane C M, Kanimozhi K, Kennedy J, Siddhardha B, Reddy E S, Rotte N K, Sharma C S, Thema F T, Letsholathebe D, Mola G T, Maaza M. Elucidation of Photocatalysis, Photoluminescence and Antibacterial Studies of ZnO Thin Films by Spin Coating Method[J]. J. Photochem. Photobiol. B, 2017,173:466-475. doi: 10.1016/j.jphotobiol.2017.06.026

    27. [27]

      Umar A, Alshahrani A A, Algarni H, Kumar R. CuO Nanosheets as Potential Scaffolds for Gas Sensing Applications[J]. Sens. Actuators B, 2017,250:24-31. doi: 10.1016/j.snb.2017.04.062

    28. [28]

      Islam M R, Obaid J E, Saiduzzaman M, Nishat S S, Debnath T, Kabir A. Effect of Al Doping on the Structural and Optical Properties of CuO Nanoparticles Prepared by Solution Combustion Method: Experiment and DFT Investigation[J]. J. Phys. Chem. Solids, 2020,147109646. doi: 10.1016/j.jpcs.2020.109646

    29. [29]

      Li X L, He S S, Liu X S, Jin J S, Meng H. Polymer-Assisted Freeze-Drying Synthesis of Ag-Doped ZnO Nanoparticles with Enhanced Photocatalytic Activity[J]. Ceram. Int., 2019,45(1):494-502. doi: 10.1016/j.ceramint.2018.09.195

    30. [30]

      Yang L, Zheng H Y, Liu Q W, Zhou S Y, Zhang W. The Doping Site Analysis and Control of Eu3+ in ZnO: Eu Crystal Lattice[J]. J. Lumin., 2018,204:189-194. doi: 10.1016/j.jlumin.2018.08.038

    31. [31]

      Liu Y F, Yu Z R, Guo S S, Yao L L, Sun R Z, Huang X Y, Zhao W R. Photocatalytic Nitrogen Fixation on Transition Metal Modified TiO2 Nanosheets under Simulated Sunlight[J]. New J. Chem., 2020,44(45):19924-19932. doi: 10.1039/D0NJ04397D

    32. [32]

      Zhang Y, Huang J W, Ding Y. Porous Co3O4/CuO Hollow Polyhedral Nanocages Derived from Metal-Organic Frameworks with Heterojunctions as Efficient Photocatalytic Water Oxidation Catalysts[J]. Appl. Catal. B, 2016,198:447-456. doi: 10.1016/j.apcatb.2016.05.078

    33. [33]

      Odoom-Wubah T, Li Q, Wang Q, Usha M Z R, Huang J, Li Q. Template-Free Synthesis of Carbon Self-Doped ZnO Superstructures as Efficient Support for Ultra Fine Pd Nanoparticles and Their Catalytic Activity Towards Benzene Oxidation[J]. Mol. Catal., 2019,469:118-130. doi: 10.1016/j.mcat.2019.03.013

    34. [34]

      Xiao X C, Han B Q, Chen G, Wang L H, Wang Y D. Preparation and Electrochemical Performances of Carbon Sphere@ZnO Core-Shell Nanocomposites for Supercapacitor Applications[J]. Sci. Rep., 2017,740167. doi: 10.1038/srep40167

    35. [35]

      Sharma M, Joshi M, Nigam S, Shree S, Avasthi D K, Adelung R, Srivastava S K, Mishra Y K. ZnO Tetrapods and Activated Carbon Based Hybrid Composite: Adsorbents for Enhanced Decontamination of Hexavalent Chromium from Aqueous Solution[J]. Chem. Eng. J., 2019,358:540-551. doi: 10.1016/j.cej.2018.10.031

    36. [36]

      Qin C, Wang Y, Gong Y X, Zhang Z Y, Cao J L. CuO-ZnO Hetero-Junctions Decorated Graphitic Carbon Nitride Hybrid Nanocomposite: Hydrothermal Synthesis and Ethanol Gas Sensing Application[J]. J. Alloys Compd., 2019,770:972-980. doi: 10.1016/j.jallcom.2018.08.205

    37. [37]

      Zhao S K, Shen Y B, Hao F L, Kang C K, Cui B Y, Wei D Z, Meng F L. p-n Junctions Based on CuO-Decorated ZnO Nanowires for Ethanol Sensing Application[J]. Appl. Surf. Sci., 2021,538148140. doi: 10.1016/j.apsusc.2020.148140

    38. [38]

      Duan Y L, Ma J, Dai J N, Qiang L S, Xue J Q. Morphology Engineering of ZnO Nanostructures for Enhanced Photocatalytic Efficiency of In(OH)3/ZnO Nanocomposite[J]. Appl. Surf. Sci., 2021,535147657. doi: 10.1016/j.apsusc.2020.147657

    39. [39]

      Ahmad I, Akhtar M S, Ahmed E, Ahmad M, Keller V, Khan W Q, Khalid N R. Rare Earth Co-Doped ZnO Photocatalysts: Solution Combustion Synthesis and Environmental Applications[J]. Sep. Purif. Technol., 2020,237116328. doi: 10.1016/j.seppur.2019.116328

    40. [40]

      Xing P X, Chen P F, Chen Z Q, Hu X, Lin H J, Wu Y, Zhao L H, He Y M. Novel Ternary MoS2/C-ZnO Composite with Efficient Performance in Photocatalytic NH3 Synthesis under Simulated Sunlight[J]. ACS Sustainable Chem. Eng., 2018,6(11):14866-14879. doi: 10.1021/acssuschemeng.8b03388

    41. [41]

      Lei Y G, Yang C, Hou J H, Wang F, Min S X, Ma X H, Jin Z L, Xu J, Lu G X, Huang K W. Strongly Coupled Cds/Graphene Quantum Dots Nanohybrids for Highly Efficient Photocatalytic Hydrogen Evolution: Unraveling the Essential Roles of Graphene Quantum Dots[J]. Appl. Catal. B, 2017,216:59-69. doi: 10.1016/j.apcatb.2017.05.063

    42. [42]

      Isari A A, Payan A, Fattahi M, Jorfi S, Kakavandi B. Photocatalytic Degradation of Rhodamine B and Real Textile Wastewater Using Fe-Doped TiO2 Anchored on Reduced Graphene Oxide (Fe-TiO2/rGO): Characterization and Feasibility, Mechanism and Pathway Studies[J]. Appl. Surf. Sci., 2018,462:549-564. doi: 10.1016/j.apsusc.2018.08.133

    43. [43]

      Zhang F, Shen L, Li J, Zhang Y C, Wang G L, Zhu A P. Room Temperature Photocatalytic Deposition of Au Nanoparticles on SnS2 Nanoplates for Enhanced Photocatalysis[J]. Powder Technol., 2021,383:371-380. doi: 10.1016/j.powtec.2021.01.065

    44. [44]

      LIU H. Preparation and Photocatalytic Activities for Hydrogen Evolution of Cu Nanoparcitles/Fluorine-Doped Tin Oxide. Guangzhou: South China University of Technology, 2018: 21-30

    45. [45]

      Zhang L W, Cheng H Y, Zong R L, Zhu Y F. Photocorrosion Suppression of ZnO Nanoparticles via Hybridization with Graphite-like Carbon and Enhanced Photocatalytic Activity[J]. J. Phys. Chem. C, 2009,113(6):2368-2374. doi: 10.1021/jp807778r

    46. [46]

      Han C, Yang M Q, Weng B, Xu Y J. Improving the Photocatalytic Activity and Anti-Photocorrosion of Semiconductor ZnO by Coupling with Versatile Carbon[J]. Phys. Chem. Chem. Phys., 2014,16(32):16891-16903. doi: 10.1039/C4CP02189D

    47. [47]

      Taylor C M, Ramirez-Canon A, Wenk J, Mattia D. Enhancing the Photo-Corrosion Resistance of ZnO Nanowire Photocatalysts[J]. J. Hazard. Mater., 2019,378120799. doi: 10.1016/j.jhazmat.2019.120799

    48. [48]

      Wang L X, Xia Y, Yu J G. Hydrogen-Bond Activation of N2 Molecules and Photocatalytic Nitrogen Fixation[J]. Chem, 2021,7(8):1983-1985. doi: 10.1016/j.chempr.2021.07.009

  • 加载中
    1. [1]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    2. [2]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    3. [3]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    4. [4]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    5. [5]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Zhonghong Yan Chunxia Li Ruolin Yang . Analysis of the Use and Effectiveness of Concept Mapping Assignments in English Medium Instruction of General Chemistry. University Chemistry, 2025, 40(4): 224-231. doi: 10.12461/PKU.DXHX202405138

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(15)
  • Abstract views(1547)
  • HTML views(535)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return