Citation: Qi ZENG, Yan XU, Hua-Bin CHEN, Xuan XU, Zhi-Guang XU, Hai-Yang LIU. Oxygen Atom Transfer Reaction Mechanism between Manganese(Ⅴ)-Oxo Corrole Complexes and Styrene[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 39-45. doi: 10.11862/CJIC.2022.005 shu

Oxygen Atom Transfer Reaction Mechanism between Manganese(Ⅴ)-Oxo Corrole Complexes and Styrene

Figures(5)

  • The oxygen atom transfer (OAT) reaction pathway of the reaction between styrene and manganese(Ⅴ)-oxo corrole complexes (MnO corrole) was investigated using the density functional theory B3LYP method. The calculation results showed that the oxygen atom attacked the β carbon atom of the olefinic double bond in styrene to form a transition state, and the direct oxygen atom transfer pathway was determined via the intrinsic reaction coordinate method (IRC) and the minimum -energy crossing point (MECP) calculation. The meso -pentafluorophenyl group of MnO corrole can change the electrophilicity of the manganese atom and increase electrostatic repulsion between the substituent and the oxygen atom, leading to the improvement of oxygen transferability of MnO corrole. With the increase of the pentafluorophenyl group number at the MnO corrole, the reaction energy barrier decreases accordingly. Furthermore, the reaction energy barrier of the triplet state is significantly lower than that of the singlet state pathway, indicating that spin exchange is prone to occur and the reaction proceeds via triplet state pathway. In the OAT reaction pathway, the reactants in singlet state reach to MECP position firstly, and then change to the triplet state with spin over easily. After that, the reactants follow the triplet state pathway with a lower transition state to achieve the product.
  • 加载中
    1. [1]

      Baglia R A, Zaragoza J P T, Goldberg D P. Biomimetic Reactivity of Oxygen-Derived Manganese and Iron Porphyrinoid Complexes[J]. Chem. Rev., 2017,117(21):13320-13352. doi: 10.1021/acs.chemrev.7b00180

    2. [2]

      Larson V A, Battistella B, Ray K, Lehnert N, Nam W. Iron and Manganese Oxo Complexes, Oxo Wall and Beyond[J]. Nat. Rev. Chem., 2020,4(8):404-419. doi: 10.1038/s41570-020-0197-9

    3. [3]

      Zhang R, Klaine S, Alcantar C, Bratcher F. Visible Light Generation of High - Valent Metal - Oxo Intermediates and Mechanistic Insights into Catalytic Oxidations[J]. J. Inorg. Biochem., 2020,212:111246-11259. doi: 10.1016/j.jinorgbio.2020.111246

    4. [4]

      Mcevoy J P, Brudvig G W. Water-Splitting Chemistry of Photosystem Ⅱ[J]. Chem. Rev., 2006,106(11):4455-4483. doi: 10.1021/cr0204294

    5. [5]

      Neu H M, Quesne M G, Yang T, Prokop-Prigge K A, Lancaster K M, Donohoe J, Debeer S, de Visser S P, Goldberg D P. Dramatic Influence of an Anionic Donor on the Oxygen-Atom Transfer Reactivity of a Mn-Oxo Complex[J]. Chem. Eur. J., 2014,20(45):14584-14588. doi: 10.1002/chem.201404349

    6. [6]

      Zou H B, Yang H, Liu Z Y, Mahmood M H R, Mei G Q, Liu H Y, Chang C K. Iron (Ⅳ) - Corrole Catalyzed Stereoselective Olefination of Aldehydes with Ethyl Diazoacetate[J]. Organometallics, 2015,34(12):2791-2795. doi: 10.1021/acs.organomet.5b00069

    7. [7]

      Kim S H, Park H, Seo M S, Kubo M, Ogura T, Klajn J, Gryko D T, Valentine J S, Nam W. Reversible O—O Bond Cleavage and Formation Between Mn (Ⅳ) - Peroxo and Mn (Ⅴ) - Oxo Corroles[J]. J. Am. Chem. Soc., 2010,132(40):14030-14032. doi: 10.1021/ja1066465

    8. [8]

      Zaragoza J P, Baglia R A, Siegler M A, Goldberg D P. Strong Inhibition of O-Atom Transfer Reactivity for Mn (Ⅳ) (O)(π-Radical-Cation) (Lewis Acid) versus Mn(Ⅴ)(O) Porphyrinoid Complexes[J]. J. Am. Chem. Soc., 2015,137(20):6531-6540. doi: 10.1021/jacs.5b00875

    9. [9]

      Ka W K, Ngo F L, Ranburger D, Malone J, Zhang R. Visible Light-Induced Formation of Corrole-Manganese(Ⅴ)-Oxo Complexes: Observation of Multiple Oxidation Pathways[J]. J. Inorg. Biochem., 2016,163:39-44. doi: 10.1016/j.jinorgbio.2016.08.004

    10. [10]

      Liu H Y, Mahmood M H, Qiu S X, Chang C K. Recent Developments in Manganese Corrole Chemistry[J]. Coord. Coord. Chem. Rev., 2013,257(7/8):1306-1333.  

    11. [11]

      Wang Q, Zhang Y, Yu L, Yang H, Mahmood M H R, Liu H Y. Solvent Effects on the Catalytic Activity of Manganese (Ⅲ) Corroles[J]. J. Porphyrins Phthalocyanines, 2014,18(4):316-325. doi: 10.1142/S1088424614500059

    12. [12]

      Kumar A, Goldberg I, Botoshansky M, Buchman Y, Gross Z. Oxygen Atom Transfer Reactions from Isolated (Oxo)manganese (Ⅴ) Corroles to Sulfides[J]. J. Am. Chem. Soc., 2010,132(43):15233-15245. doi: 10.1021/ja1050296

    13. [13]

      Xu Y, Xu Z G, Zhang X H, Chen H B, Xu Xuan, Liu H Y. Oxygen Atom Transfer Reaction of Manganese-Oxo Corrole toward Dimethyl Sulfide: A Density Functional Study[J]. Chin. J. Struct. Chem., 2019,38(11):1857-1866.

    14. [14]

      Bose S, Pariyar A, Biswas A N, Das P, Bandyopadhyay P. Electron Deficient Manganese(Ⅲ) Corrole Catalyzed Oxidation of Alkanes and Alkylbenzenes at Room Temperature[J]. Catal. Commun., 2011,12(13):1193-1197. doi: 10.1016/j.catcom.2011.04.026

    15. [15]

      Gross Z, Golubkov G, Simkhovich L. Epoxidation Catalysis by a Manganese Corrole and Isolation of an Oxo - Manganese (Ⅴ) Corrole[J]. Angew. Chem. Int. Ed., 2000,39(22):4045-4047. doi: 10.1002/1521-3773(20001117)39:22<4045::AID-ANIE4045>3.0.CO;2-P

    16. [16]

      Collman J P, Zeng L, Decréau R A. Multiple Active Oxidants in Competitive Epoxidations Catalyzed by Porphyrins and Corroles[J]. Chem. Commun., 2003(24):2974-2975. doi: 10.1039/B310763A

    17. [17]

      Gross Z, Simkhovich L, Galili N. First Catalysis by Corrole Metal Complexes: Epoxidation, Hydroxylation, and Cyclopropanation[J]. Chem. Commun., 1999(7):599-600. doi: 10.1039/a900571d

    18. [18]

      Liu H Y, Yam F, Xie Y T, Li X Y, Chang C K. A Bulky Bis-Pocket Manganese (Ⅴ) - Oxo Corrole Complex: Observation of Oxygen Atom Transfer Between Triply Bonded Mn ≡O and Alkene[J]. J. Am. Chem. Soc., 2009,131(36):12890-12891. doi: 10.1021/ja905153r

    19. [19]

      Zhang R, Harischandra D N, Newcomb M. Laser Flash Photolysis Generation and Kinetic Studies of Corrole-Manganese(Ⅴ)-Oxo Intermediates[J]. Chem. Eur. J., 2005,11(19):5713-5720. doi: 10.1002/chem.200500134

    20. [20]

      Zhang R, Newcomb M. Laser Flash Photolysis Generation of High-Valent Transition Metal-Oxo Species: Insights from Kinetic Studies in Real Time[J]. Acc. Chem. Res., 2008,41(3):468-477. doi: 10.1021/ar700175k

    21. [21]

      Liu H Y, Zhou H, Liu L L, Ying X, Jiang H F, Chang C K. The Effect of Axial Ligand on the Reactivity of Oxo - Manganese (Ⅴ) Corrole[J]. Chem. Lett., 2007,36(2):274-275. doi: 10.1246/cl.2007.274

    22. [22]

      He J, Xu Z G, Xu X, Gong L Z, Mahmood M H R, Liu H Y. Reactivity of (Oxo)manganese (Ⅴ) Corroles in One - Electron Redox State: Insights from Conceptual DFT and Transition Sate Calculations[J]. J. Porphyrins Phthalocyanines, 2013,17(12):1196-1203. doi: 10.1142/S1088424613500971

    23. [23]

      Gong L Z, Xu Z G, Xu X, He J, Wang Q, Liu H Y. Axial Coordination Behavior of Corrole Mn-Ⅲ and (MnO)-O-Ⅴ Complexes with NBased Ligands[J]. Acta Phys. Chim. Sin., 2014,30(2):265-272. doi: 10.3866/PKU.WHXB201312181

    24. [24]

      Lee C, Yang W, Parr R G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density[J]. Phys. Rev. B: Condens. Matter, 1988,37(2):785-789. doi: 10.1103/PhysRevB.37.785

    25. [25]

      Becke A D. Density - Functional Exchange - Energy Approximation with Correct Asymptotic Behavior[J]. Phys. Rev. A: At. Mol. Opt. Phys., 1988,38(6):3098-3100. doi: 10.1103/PhysRevA.38.3098

    26. [26]

      Couty M, Hall M B. Basis Sets for Transition Metals: Optimized Outer p Functions[J]. J. Comput. Chem., 1996,17(11):1359-1370. doi: 10.1002/(SICI)1096-987X(199608)17:11<1359::AID-JCC9>3.0.CO;2-L

    27. [27]

      Zhu C, Liang J X, Wang B J, Zhu J, Cao Z X. Significant Effect of Spin Flip on the Oxygen Atom Transfer Reaction from (Oxo)manganese (Ⅴ) Corroles to Thioanisole: Insights from Density Functional Calculations[J]. Phys. Chem. Chem. Phys., 2012,14(37):12800-12806. doi: 10.1039/c2cp41647f

    28. [28]

      Harvey J N, Aschi M, Schwarz H, Koch W. The Singlet and Triplet States of Phenyl Cation[J]. A Hybrid Approach for Locating Minimum Energy Crossing Points Between Non - Interacting Potential Energy Surfaces. Theor. Chem. Acc., 1998,99:95-99.

    29. [29]

      Lu T. SobMECP Program, http://sobereva.com/286.

    30. [30]

      HE J, XU Z G, ZENG Y X, XU X, YU L, WANG Q, LIU H Y. Effect of Substituents on Mn—O Bond in Oxo-Manganese(Ⅴ) Corrole Complexes[J]. Acta Phys.-Chim. Sin., 2012,7(28):1658-1664.  

    31. [31]

      LI J, XU Y, XU X, XU Z G, LIU H Y. Mechanism of Catalytic Hydrolysis Cleavage of DNA Phosphodiester Analogue HpPNP by Corrole Manganese(Ⅲ) Complex[J]. Chinese J. Inorg. Chem., 2020,36(3):435-442.  

    32. [32]

      Liu H Y, Lai T S, Yeung L L, Chang C K. First Synthesis of Perfluorinated Corrole and Its MnO Complex[J]. Org. Lett., 2003,5(5):617-620. doi: 10.1021/ol027111i

  • 加载中
    1. [1]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    2. [2]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    3. [3]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    4. [4]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    8. [8]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    9. [9]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    12. [12]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    13. [13]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    14. [14]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    15. [15]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    16. [16]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    17. [17]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    19. [19]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    20. [20]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

Metrics
  • PDF Downloads(7)
  • Abstract views(1109)
  • HTML views(278)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return