Citation: Dan-Dan ZHENG, Zhong-Cheng HUANG, Min LIU, Jin-Shui ZHANG, Ting QIU. Preparation and Photocatalytic Performance of g-C3N4-Based Composite Separation Membrane[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(12): 2235-2243. doi: 10.11862/CJIC.2021.257 shu

Preparation and Photocatalytic Performance of g-C3N4-Based Composite Separation Membrane

  • Corresponding author: Ting QIU, tingqiu@fzu.edu.cn
  • Received Date: 6 July 2021
    Revised Date: 25 October 2021

Figures(10)

  • Using the amino group on the surface of g-C3N4 nanosheet, chemically cross-linked with the benzyl group chloride of the chloromethylated polyether sulfone (CMPES), which is the membrane substrate, then g-C3N4/CMPES composite membrane was provided by the phase inversion. The effects of the addition of g-C3N4 nanosheets on the structure, morphology, and filtration, photocatalysis, antifouling performance of composite membranes were systematically studied, meanwhile the mechanism of photocatalytic degradation of bovine serum albumin (BSA) solution was also discussed. The results showed that the photocatalytic performance and stability of the composite membrane were effectively improved by chemical bond between the g-C3N4 nanosheets and the membrane substrate material. Due to the photocatalytic effect and the hydrophilicity of g-C3N4 nanosheets, the composite membrane shows excellent filtration performance and anti-pollution performance.
  • 加载中
    1. [1]

      Abbt-Braun G, Lankes U, Frimmel F H. Structural Characterization of Aquatic Humic Substances-The Need for a Multiple Method Approach[J]. Aquat. Sci., 2004,66(2):151-170. doi: 10.1007/s00027-004-0711-z

    2. [2]

      Tijing L D, Woo Y C, Choi J S, Lee S, Kim S H, Shon H K. Fouling and Its Control in Membrane Distillation-A Review[J]. J. Membr. Sci., 2015,475:215-244. doi: 10.1016/j.memsci.2014.09.042

    3. [3]

      Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972,238:37-38. doi: 10.1038/238037a0

    4. [4]

      Qian D L, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. TiO2/Sulfonated Graphene Oxide/Ag Nanoparticle Membrane: In Situ Separation and Photodegradation of Oil/Water Emulsions[J]. J. Membr. Sci., 2018,554:16-25. doi: 10.1016/j.memsci.2017.12.084

    5. [5]

      Li N, Tian Y, Zhang J, Sun Z, Zhao J, Zuo W. Precisely-Controlled Modification of PVDF Membranes with 3D TiO2/ZnO Nanolayer: Enhanced Anti-fouling Performance by Changing Hydrophilicity and Photocatalysis under Visible Light Irradiation[J]. J. Membr. Sci., 2017,528:359-368. doi: 10.1016/j.memsci.2017.01.048

    6. [6]

      Lee K M, Lai C W, Ngai K S, Juan J C. Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review[J]. Water Res., 2016,88:428-448. doi: 10.1016/j.watres.2015.09.045

    7. [7]

      Rajeswari A, Vismaiya S, Pius A. Preparation, Characterization of Nano ZnO-Blended Cellulose Acetate-Polyurethane Membrane for Photocatalytic Degradation of Dyes from Water[J]. Chem. Eng. J., 2017,313:928-937. doi: 10.1016/j.cej.2016.10.124

    8. [8]

      Zinadini S, Rostami S, Vatanpour V, Jalilian E. Preparation of Antibiofouling Polyethersulfone Mixed Matrix NF Membrane Using Photocatalytic Activity of ZnO/MWCNTs Nanocomposite[J]. J. Membr. Sci., 2017,529:133-141. doi: 10.1016/j.memsci.2017.01.047

    9. [9]

      Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J]. Nat. Mater., 2009,8:76-82. doi: 10.1038/nmat2317

    10. [10]

      Zheng Y, Lin L H, Wang B, Wang X C. Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis[J]. Angew. Chem. Int. Ed., 2015,54:12868-12884. doi: 10.1002/anie.201501788

    11. [11]

      WANG Y Q, SHEN S H. Progress and Prospects of Non-Metal Doped Graphitic Carbon Nitride for Improved Photocatalytic Performances[J]. Acta Phys.-Chim. Sin., 2020,36(3):57-70.  

    12. [12]

      Li G S, Xie Z P, Chai S M, Chen X. A Facile One-Step Fabrication of Holey Carbon Nitride Nanosheets for Visible-Light-Driven Hydrogen Evolution[J]. Appl. Catal. B, 2021,283119637. doi: 10.1016/j.apcatb.2020.119637

    13. [13]

      Zhang G G, Lan Z A, Wang X C. Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution[J]. Angew. Chem. Int. Ed., 2016,55:15712-15727. doi: 10.1002/anie.201607375

    14. [14]

      Wei Y B, Zhu Y X, Jiang Y J. Photocatalytic Self-Cleaning Carbon Nitride Nanotube Intercalated Reduced Graphene Oxide Membranes for Enhanced Water Purification[J]. Chem. Eng. J., 2019,356:915-925. doi: 10.1016/j.cej.2018.09.108

    15. [15]

      Wang X T, Wang G L, Chen S, Fan X F, Quan X, Yu H T. Integration of Membrane Filtration and Photoelectrocatalysis on g-C3N4/CNTs/Al2O3 Membrane with Visible-Light Response for Enhanced Water Treatment[J]. J. Membr. Sci., 2017,541:153-161. doi: 10.1016/j.memsci.2017.06.046

    16. [16]

      Zhang M Y, Fu M L, Zhang K S. Graphitic-like Carbon Nitride Improved Thermal Stability and Photocatalytic Antifouling Performance of Polyethersulfone Membranes[J]. Desalin. Water Treat., 2018,103(7):40-48.  

    17. [17]

      Salim N E, Jaafar J, Ismail A F, Othman M H D, Rahman M A, Yusof N, Qtaishat M, Matsuura T, Aziz F, Salleh W N W. Preparation and Characterization of Hydrophilic Surface Modifier Macromolecule Modified Poly(ether sulfone) Photocatalytic Membrane for Phenol Removal[J]. Chem. Eng. J., 2018,335:236-247. doi: 10.1016/j.cej.2017.10.147

    18. [18]

      Salim N E, Nor N A W, Jaafar J, Ismail A F, Qtaishat M R, Matsuura T, Othman M H D, Mukhlis A. Effects of Hydrophilic Surface Macromolecule Modifier Loading on PES/O-g-C3N4 Hybrid Photocatalytic Membrane for Phenol Removal[J]. Appl. Surf. Sci., 2019,465:180-191. doi: 10.1016/j.apsusc.2018.09.161

    19. [19]

      LIU Z Y, CAO R Y, ZHANG M Y. Preparation and Property of Polyethersulfone Ultrafiltration Membranes with Mesoporous-Graphitic-C3N4/Ag[J]. J. Inorg. Mater., 2019,34(5):479-486.  

    20. [20]

      Lu X L, Xu K, Chen P Z, Jia K C, Liu S, Wu C Z. Facile One Step Method Realizing Scalable Production of g-C3N4 Nanosheets and Study of Their Photocatalytic H2 Evolution Activity[J]. J. Mater. Chem. A, 2014,2:18924-18928. doi: 10.1039/C4TA04487H

    21. [21]

      Zheng D D, Huang C J, Wang X C. Post-Annealing Reinforced Hollow Carbon Nitride Nanospheres for Hydrogen Photosynthesis[J]. Nanoscale, 2015,7:465-470. doi: 10.1039/C4NR06011C

    22. [22]

      Wang C, Hou Y C, Cheng J J, Wang X C. Biomimetic Donor-Acceptor Motifs in Carbon Nitrides: Enhancing Red-Light Photocatalytic Selective Oxidation by Rational Surface Engineering[J]. Appl. Catal. B, 2021,294120259. doi: 10.1016/j.apcatb.2021.120259

    23. [23]

      Li J H, Yan B F, Shao X S, Wang S S, Tian H Y, Zhang Q Q. Influence of Ag/TiO2 Nanoparticle on the Surface Hydrophilicity and Visible-Light Response Activity of Polyvinylidene Fluoride Membrane[J]. Appl. Surf. Sci., 2015,324:82-89. doi: 10.1016/j.apsusc.2014.10.080

    24. [24]

      Mamba G, Mishra A K. Graphitic Carbon Nitride (g-C3N4) Nanocomposites: A New and Exciting Generation of Visible Light Driven Photocatalysts for Environmental Pollution Remediation[J]. Appl. Catal. B, 2016,198:347-377. doi: 10.1016/j.apcatb.2016.05.052

    25. [25]

      Zhou K G, Mcmanus D, Prestat E, Zhong X, Shin Y Y, Zhang H L, Haigh S J, Casiraghi C. Self-Catalytic Membrane Photo-Reactor Made of Carbon Nitride Nanosheets[J]. J. Mater. Chem. A, 2016,4(30):11666-11671. doi: 10.1039/C5TA09152G

    26. [26]

      Cao K T, Jiang Z Y, Zhang X S, Zhang Y M, Zhao J, Xing R S, Yang S, Gao C Y, Pan F S. Highly Water-Selective Hybrid Membrane by Incorporating g-C3N4 Nanosheets into Polymer Matrix[J]. J. Membr. Sci., 2015,490:72-83. doi: 10.1016/j.memsci.2015.04.050

    27. [27]

      Xu Z W, Wu T F, Shi J, Teng K Y, Wang W, Ma M J, Li J, Qian X M, Li C Y, Fan J T. Photocatalytic Antifouling PVDF Ultrafiltration Membranes Based on Synergy of Graphene Oxide and TiO2 for Water Treatment[J]. J. Membr. Sci., 2016,520:281-293. doi: 10.1016/j.memsci.2016.07.060

    28. [28]

      Damodar A, You J, Chou H. Study the Self Cleaning, Antibacterial and Photocatalytic Properties of TiO2 Entrapped PVDF Membranes[J]. J. Hazard. Mater., 2009,172(2/3):1321-1328.  

    29. [29]

      Long J L, Wang S B, Ding Z X, Wang S C, Zhou Y E, Huang L, Wang X X. Amine-Functionalizedzirconium Metal-Organic Framework as Efficient Visible-Light Photocatalyst for Aerobic Organictransformations[J]. Chem. Commun., 2012,48(95):11656-11658. doi: 10.1039/c2cc34620f

    30. [30]

      Mousavi M, Habibi-Yangjeh A, Abitorabi M. Fabrication of Novel Magnetically Separable Nanocomposites Using Graphitic Carbon Nitride, Silver Phosphate and Silver Chloride and Their Applications in Photocatalytic Removal of Different Pollutants Using Visible-Light Irradiation[J]. J. Colloid. Interface Sci., 2016,480:218-231. doi: 10.1016/j.jcis.2016.07.021

    31. [31]

      Yuan Q, Chen L, Xiong M, He J, Luo S L, Au C T, Yin S F. Cu2O/BiVO 4 Heterostructures: Synthesis and Application in Simultaneous Photocatalytic Oxidation of Organic Dyes and Reduction of Cr (Ⅵ) under Visible Light[J]. Chem. Eng. J., 2014,255:394-402. doi: 10.1016/j.cej.2014.06.031

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    3. [3]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    6. [6]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    9. [9]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    14. [14]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    17. [17]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    18. [18]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

Metrics
  • PDF Downloads(9)
  • Abstract views(1995)
  • HTML views(228)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return