Citation: Chun YANG, Xin-Yue ZHAO, Ling-Zhi ZHANG. Preparation and Electrochemical Performance of Porous Carbon/Selenium Composite Free-Standing Electrode[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 1922-1930. doi: 10.11862/CJIC.2021.242 shu

Preparation and Electrochemical Performance of Porous Carbon/Selenium Composite Free-Standing Electrode

  • Corresponding author: Ling-Zhi ZHANG, lzzhang@ms.giec.ac.cn
  • Received Date: 1 February 2021
    Revised Date: 28 September 2021

Figures(9)

  • The porous carbon nanofiber films (PCNFS) were prepared via electrospinning and sol-gel method using SiO2 as template. Then, a flexible carbon/selenium composite electrode (Se@PCNFS) was obtained by melting and diffusion loading of selenium. The microstructure and morphology of the materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the porous carbon nanofibers endowed the diameter of about 300 nm and selenium was uniformly dispersed within the fibers. Thus, Se@PCNFS electrode showed outstanding cycling performance and rate performance in lithium-selenium battery. 1Se@PCNFS electrode delivered the initial specific capacity of 569 mAh·g-1 and maintained a reversible capacity of 340 mAh·g-1 after 500 cycles at 0.5C rate. The reversible capacity was 403 mAh·g-1 at 2C rate.
  • 加载中
    1. [1]

      Hu Y, Chen W, Lei T Y, Jiao Y, Huang J W, Hu A J, Gong C H, Yan C Y, Wang X F, Xiong J. Strategies Toward High-Loading Lithium-Sulfur Battery.[J]. Adv. Energy Mater., 2020,10(17)200082.  

    2. [2]

      Chen S R, Dai F, Cai M. Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications.[J]. ACS Energy Lett., 2020,5(10):3140-3151. doi: 10.1021/acsenergylett.0c01545

    3. [3]

      Nayak P K, Yang L T, Brehm W, Adelhelm P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises.[J]. Angew. Chem. Int. Ed., 2018,57(1):102-120. doi: 10.1002/anie.201703772

    4. [4]

      Zhao M, Li B Q, Chen X, Xie J, Yuan H, Huang J Q. Redox Comediation with Organopolysulfides in Working Lithium-Sulfur Batteries.[J]. Chem, 2020,6(12):3297-3311. doi: 10.1016/j.chempr.2020.09.015

    5. [5]

      PAN P F, CHEN P, FANG Y N, SHAN Q, CHEN N N, FENG X M, LIU R Q, LI P, MA Y W. V2O5 Hollow Spheres as High Efficient Sulfur Host for Li-S Batteries.[J]. Chinese J. Inorg. Chem., 2020,36(3):575-583.  

    6. [6]

      Yu M L, Wang Z Y, Wang Y W, Dong Y F, Qiu J S. Freestanding Flexible Li2S Paper Electrode with High Mass and Capacity Loading for High-Energy Li-S Batteries.[J]. Adv. Energy Mater., 2017,71700018. doi: 10.1002/aenm.201700018

    7. [7]

      Wang H Q, Chen Z X, Liu H K, Guo Z P. A Facile Synthesis Approach to Micro-Macroporous Carbon from Cotton and Its Application in the Lithium-Sulfur Battery.[J]. RSC Adv., 2014,4(110):65074-65080. doi: 10.1039/C4RA12260G

    8. [8]

      Cheng X B, Yan C, Chen X, Guan C, Huang J Q, Peng H J, Zhang R, Yang S T, Zhang Q. Implantable Solid Electrolyte Interphase in Lithium -Metal Batteries.[J]. Chem, 2017,2(2):258-270. doi: 10.1016/j.chempr.2017.01.003

    9. [9]

      Zhang S S. Role of LiNO3 in Rechargeable Lithium/Sulfur Battery.[J]. Electrochim. Acta, 2012,70:344-348. doi: 10.1016/j.electacta.2012.03.081

    10. [10]

      Ma G Q, Wen Z Y, Jin J, Lu Y, Rui K, Wu X W, Zhang J C. Enhanced Performance of Lithium Sulfur Battery with Polypyrrole Warped Meso-porous Carbon/Sulfur Composite.[J]. J. Power Sources, 2014,254:353-359. doi: 10.1016/j.jpowsour.2013.12.085

    11. [11]

      Ding Z W, Zhao D L, Yao R R, Li C, Cheng X W, Hu T. Polyaniline@Spherical Ordered Mesoporous Carbon/Sulfur Nanocomposites for High-Performance Lithium-Sulfur Batteries.[J]. Int. J. Hydrogen Energy, 2018,43(22):10502-10510. doi: 10.1016/j.ijhydene.2018.04.134

    12. [12]

      Wang H L, Yang Y, Liang Y Y, Robinson J T, Li Y G, Jackson A, Cui Y, Dai H J. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability.[J]. Nano Lett., 2011,11(7):2644-2647. doi: 10.1021/nl200658a

    13. [13]

      Seh Z W, Li W Y, Cha J J, Zheng G Y, Yang Y, McDowell M T, Hsu P C, Cui Y. Sulphur-TiO2 Yolk-Shell Nanoarchitecture with Internal Void Space for Long-Cycle Lithium-Sulphur Batteries.[J]. Nat. Commun., 2013,4:1-6.  

    14. [14]

      Luo C, Zhu Y J, Wen Y, Wang J J, Wang C S. Carbonized Polyacrylonitrile-Stabilized SeSx Cathodes for Long Cycle Life and High Power Density Lithium Ion Batteries.[J]. Adv. Funct. Mater., 2014,24:4082-4089. doi: 10.1002/adfm.201303909

    15. [15]

      Jin J, Tian X C, Srikanth N, Kong L B, Zhou K. Advances and Challenges of Nanostructured Electrodes for Li-Se Batteries.[J]. J. Mater. Chem. A, 2017,5(21):10110-10126. doi: 10.1039/C7TA01384A

    16. [16]

      Yao Y, Chen M L, Xu R, Zeng S F, Yang H, Ye S F, Liu F F, Wu X J, Yu Y. CNT Interwoven Nitrogen and Oxygen Dual-Doped Porous Carbon Nanosheets as Free-Standing Electrodes for High-Performance Na-Se and K-Se Flexible Batteries.[J]. Adv. Mater., 2018,30(49)1805234. doi: 10.1002/adma.201805234

    17. [17]

      Zhan J J, Xu Y H, Fan L, Zhu Y C, Liang J W, Qian Y T. Graphene-Encapsulated Selenium/Polyaniline Core-Shell Nanowires with Enhanced Electrochemical Performance for Li-Se Batteries.[J]. Nano Energy, 2015,13:592-600. doi: 10.1016/j.nanoen.2015.03.028

    18. [18]

      Kalimuthu B, Nallathamby K. Designed Formulation of Se-Impregnated N-Containing Hollow Core Mesoporous Shell Carbon Spheres: Multifunctional Potential Cathode for Li-Se and Na-Se Batteries.[J]. ACS Appl. Mater. Interfaces, 2017,9:26756-26770. doi: 10.1021/acsami.7b05103

    19. [19]

      Ding J, Zhou H, Zhang H L, Tong L Y, Mitlin D. Selenium Impregnated Monolithic Carbons as Free-Standing Cathodes for High Volumetric Energy Lithium and Sodium Metal Batteries.[J]. Adv. Energy Mater., 2018,81701918. doi: 10.1002/aenm.201701918

    20. [20]

      He J R, Chen Y F, Lv W Q, Wen K C, Li P J, Wang Z G, Zhang W L, Qin W, He W D. Three-Dimensional Hierarchical Graphene-CNT@Se: A Highly Efficient Freestanding Cathode for Li-Se Batteries.[J]. ACS Energy Lett., 2016,1(1):16-20. doi: 10.1021/acsenergylett.6b00015

    21. [21]

      Yang J Q, Zhou X L, Wu D H, Zhao X D, Zhou Z. S-Doped N-Rich Carbon Nanosheets with Expanded Interlayer Distance as Anode Materials for Sodium-Ion Batteries.[J]. Adv. Mater., 2017,291604108. doi: 10.1002/adma.201604108

    22. [22]

      Zeng L C, Zeng W C, Jiang Y, Wei X, Li W H, Yang C L, Zhu Y W, Yu Y. A Flexible Porous Carbon Nanofibers-Selenium Cathode with Superior Electrochemical Performance for Both Li-Se and Na-Se Batteries.[J]. Adv. Energy Mater., 2015,51401377. doi: 10.1002/aenm.201401377

    23. [23]

      Zhang S F, Wang W P, Xin S, Ye H, Yin Y X, Guo Y G. Graphitic Nanocarbon-Selenium Cathode with Favorable Rate Capability for Li -Se Batteries.[J]. ACS Appl. Mater. Interfaces, 2017,9(10):8759-8765. doi: 10.1021/acsami.6b16708

    24. [24]

      Yang X M, Wang H K, Yu D Y W, Rogach A L. Vacuum Calcination Induced Conversion of Selenium/Carbon Wires to Tubes for High-Performance Sodium -Selenium Batteries.[J]. Adv. Funct. Mater., 2018,28(8)1706609. doi: 10.1002/adfm.201706609

    25. [25]

      Yuan B B, Sun X Z, Zeng L C, Yu Y, Wang Q S. A Freestanding and Long-Life Sodium-Selenium Cathode by Encapsulation of Selenium into Microporous Multichannel Carbon Nanofibers.[J]. Small, 2018,14(9)1703252. doi: 10.1002/smll.201703252

    26. [26]

      Li Z, Yuan L X, Yi Z Q, Liu Y, Huang Y H. Confined Selenium within Porous Carbon Nanospheres as Cathode for Advanced Li-Se Batteries.[J]. Nano Energy, 2014,9:229-236. doi: 10.1016/j.nanoen.2014.07.012

    27. [27]

      Yang B B, Liu S T, Fedoseeva Y V, Okotrub A V, Makarova A A, Jia X L, Zhou J S. Engineering Selenium-Doped Nitrogen-Rich Carbon Nanosheets as Anode Materials for Enhanced Na-Ion Storage.[J]. J. Power Sources, 2021,493229700. doi: 10.1016/j.jpowsour.2021.229700

    28. [28]

      Jiang S F, Zhang Z A, Lai Y Q, Qu Y H, Wang X W, Li J. Selenium Encapsulated into 3D Interconnected Hierarchical Porous Carbon Aerogels for Lithium-Selenium Batteries with High Rate Performance and Cycling Stability.[J]. J. Power Sources, 2014,267(1):394-404.  

    29. [29]

      Li J, Zhao X X, Zhang Z A, Lai Y Q. Facile Synthesis of Hollow Carbonized Polyaniline Spheres to Encapsulate Selenium for Advanced Rechargeable Lithium-Selenium Batteries.[J]. J. Alloys Compd., 2015,619(15):794-799.  

    30. [30]

      Park S K, Park J S, Kang Y C. Metal-Organic-Framework-Derived N-Doped Hierarchically Porous Carbon Polyhedrons Anchored on Crumpled Graphene Balls as Efficient Selenium Hosts for High-Performance Lithium-Selenium Batteries.[J]. ACS Appl. Mater. Interfaces, 2018,10(19):16531-16540. doi: 10.1021/acsami.8b03104

    31. [31]

      Lu P F, Liu F Y, Zhou F, Qin J Q, Shi H D, Wu Z S. Lignin Derived Hierarchical Porous Carbon with Extremely Suppressed Polysele-nide Shuttling for High-Capacity and Long-Cycle-Life Lithium-Selenium Batteries.[J]. J. Med. Chem., 2021,55:476-483.  

    32. [32]

      Yang J, Gao H C, Ma D J, Zou J S, Lin Z, Kang X W, Chen S W. High-Performance Li-Se Battery Cathode Based on CoSe2-Porous Carbon Composites.[J]. Electrochim. Acta, 2018,264(20):341-349.  

    33. [33]

      Zhao X S, Jiang L, Ma C H, Cheng L, Wang C Z, Chen G, Yue H J, Zhang D. The Synergistic Effects of Nanoporous Fiber TiO2 and Nickel Foam Interlayer for Ultra-Stable Performance in Lithium-Selenium Batteries.[J]. J. Power Sources, 2021,490(1)229534.  

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    3. [3]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    9. [9]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    10. [10]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    11. [11]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    12. [12]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    13. [13]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    17. [17]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    18. [18]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    19. [19]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    20. [20]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

Metrics
  • PDF Downloads(4)
  • Abstract views(960)
  • HTML views(254)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return