Citation: Ru-Xia LI, Wen-Bin ZHONG, Lin-Hua XIE, Ya-Bo XIE, Jian-Rong LI. Recent Advances in Adsorptive Removal of Cr(Ⅵ) Ions by Metal-Organic Frameworks[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(3): 385-400. doi: 10.11862/CJIC.2021.068 shu

Recent Advances in Adsorptive Removal of Cr(Ⅵ) Ions by Metal-Organic Frameworks

  • Corresponding author: Lin-Hua XIE, xielinhua@bjut.edu.cn
  • Received Date: 3 September 2020
    Revised Date: 16 January 2021

Figures(13)

  • The pollution of heavy metal ions has long been a big concern to the society. The development and utilization of porous materials for the adsorptive removal of heavy metal ions in water represents one of the hottest research subjects in related areas, such as materials science and environmental science. Due to their structural variety, large specific surface area, adjustable pore size, and tailorable pore surface characteristics, metal-organic frameworks (MOFs) show great potential in many applications, such as gas separation, catalysis, and sensing. In the past few years, many major breakthroughs have been made in the construction of highly stable MOFs. A lot of research works have been explored for the applications of MOFs in water systems, including the adsorptive removal of heavy metal ions in water. Cr(Ⅵ) ions are a kind of wide-distributed heavy metal ions with high toxicity, existing in water in various forms under different conditions. The study on the removal of Cr(Ⅵ) ions from water is of significance academically and practically. Herein, the published research works about adsorptive removal of Cr(Ⅵ) ions with MOFs or MOFbased materials are reviewed. These materials are classified into four classes: (1) highly stable zirconium-based MOF, (2) cationic MOF, (3) post-modified MOF, and (4) MOF-based composite materials. The adsorption mechanism, adsorption capacity, and regenerability of these materials for Cr(Ⅵ) ions are also discussed. The existing problems and the trend of future works for the practical application of MOFs in the removal of heavy metal ions are analyzed at last.
  • 加载中
    1. [1]

      Huang J J S, Lin S C, Löwemark L, Liou S Y H, Chang Q, Chang T K, Wei K Y, Croudace L W. Sci. Rep., 2019, 9(1): 1-6

    2. [2]

      Gupta V K, Suhas, Nayak A, Agarwal S, Chaudhary M, Tyagi I. J. Mol. Liq., 2014, 190: 215-222  doi: 10.1016/j.molliq.2013.11.008

    3. [3]

      Zhang C, Ye F G, Shen S F, Xiong Y H, Su L J, Zhao S L. RSC Adv., 2015, 5(11): 8228-8235  doi: 10.1039/C4RA15942J

    4. [4]

      Benskin J P, Yeung L W Y, Yamashita N, Taniyasu S, Lam P K S, Martin J W. Environ. Sci. Technol., 2010, 44(23): 9049-9054  doi: 10.1021/es102582x

    5. [5]

      Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T, Wang X K. Environ. Sci. Technol., 2016, 50(14): 7290-7304  doi: 10.1021/acs.est.6b01897

    6. [6]

      Blowes D. Science, 2002, 295(5562): 2024-2025  doi: 10.1126/science.1070031

    7. [7]

      Renu M A, Singh K, Upadhyaya S, Dohare R K. Mater. Today Proc., 2017, 4(9): 10534-10538  doi: 10.1016/j.matpr.2017.06.415

    8. [8]

      Paiva A N, Lima De J G, Medeiros De A C Q, Figueiredo H A O, Andrade De R L, Ururahy M A G, Rezende A A, Brandão Neto A, Almeida M D G. J. Trace Elem. Med. Biol., 2015, 32: 66-72  doi: 10.1016/j.jtemb.2015.05.006

    9. [9]

      Maleki A, Hayati B, Naghizadeh M, Joo S W. J. Ind. Eng. Chem., 2015, 28: 211-216  doi: 10.1016/j.jiec.2015.02.016

    10. [10]

      Shi P F, Zhao B, Xiong G, Hou Y L, Cheng P. Chem. Commun., 2012, 48(66): 8231-8233  doi: 10.1039/c2cc33707j

    11. [11]

      Gheju M, Balcu I. J. Hazard. Mater., 2011, 196: 131-138  doi: 10.1016/j.jhazmat.2011.09.002

    12. [12]

      Kononova O N, Bryuzgina G L, Apchitaeva O V, Kononov Y S. Arabian J. Chem., 2019, 12(8): 2713-2720  doi: 10.1016/j.arabjc.2015.05.021

    13. [13]

      Shahrak M N, Ghahramaninezhad M, Eydifarash M. Environ. Sci. Pollut. Res., 2017, 24(10): 9624-9634  doi: 10.1007/s11356-017-8577-5

    14. [14]

      Tonini D R, Gauvin D A, Soffel R W, Freeman W P. Environ. Prog., 2003, 22(3): 167-173  doi: 10.1002/ep.670220314

    15. [15]

      SHI L. Thesis for the Doctorate of Jilin University. 2014.

    16. [16]

      Vilela D, Parmar J, Zeng Y F, Zhao Y L, Sánchez S. Nano Lett., 2016, 16(4): 2860-2866  doi: 10.1021/acs.nanolett.6b00768

    17. [17]

      Huang N, Zhai L P, Xu H, Jiang D L. J. Am. Chem. Soc., 2017, 139(6): 2428-2434  doi: 10.1021/jacs.6b12328

    18. [18]

      Erdem E, Karapinar N, Donat R. J. Colloid Interface Sci., 2004, 280(2): 309-314  doi: 10.1016/j.jcis.2004.08.028

    19. [19]

      Xiao B, Thomas K M. Langmuir, 2005, 21(9): 3892-3902  doi: 10.1021/la047135t

    20. [20]

      Gao J K, Guo X W, Tao W W, Chen D, Lu J S, Chen Y. Sci. Rep., 2019, 9(1): 1-10

    21. [21]

      Pehlivan E, Arslan G. Fuel Process. Technol., 2007, 88(1): 99-106  doi: 10.1016/j.fuproc.2006.09.004

    22. [22]

      Deng S Q, Mo X J, Zheng S R, Jin X, Gao Y, Cai S L, Fan J, Zhang W J. Inorg. Chem., 2019, 58(4): 2899-2909  doi: 10.1021/acs.inorgchem.9b00104

    23. [23]

      FAN D S. Environment & Development, 2017, 29(7): 138-140
       

    24. [24]

      Jain M, Yadav M, Kohout T, Lahtinen M, Garg V K, Sillanpää M. Water Resour. Ind., 2018, 20: 54-74  doi: 10.1016/j.wri.2018.10.001

    25. [25]

      Zhang S H, Wu M F, Tang T T, Xing Q J, Peng C Q, Li F, Liu H, Luo X B, Zou J P, Min X B, Luo J M. Chem. Eng. J., 2018, 335: 945953

    26. [26]

      Bhaumik M, Agarwal S, Gupta V K, Maity A. J. Colloid Interface Sci., 2016, 470: 257-267  doi: 10.1016/j.jcis.2016.02.054

    27. [27]

      Huang J N, Li Y H, Cao Y H, Peng F, Cao Y G, Shao Q, Liu H, Guo Z H. J. Mater. Chem. A, 2018, 6(27): 13062-13074  doi: 10.1039/C8TA02861C

    28. [28]

      Mullick A, Moulik S, Bhattacharjee S. Indian Chem. Eng., 2018, 60(1): 58-71  doi: 10.1080/00194506.2017.1288173

    29. [29]

      Zheng B S, Yun R R, Bai J F, Lu Z Y, Du L T, Li L Z. Inorg. Chem., 2013, 52(6): 2823-2829  doi: 10.1021/ic301598n

    30. [30]

      Xie L H, Liu X M, He T, Li J R. Chem, 2018, 4(8): 1911-1927  doi: 10.1016/j.chempr.2018.05.017

    31. [31]

      Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38(5): 14771504

    32. [32]

      Yu J M, Xie L H, Li J R, Ma Y G, Seminario J M, Balbuena P B. Chem. Rev., 2017, 117(14): 9674-9754  doi: 10.1021/acs.chemrev.6b00626

    33. [33]

      Valvekens P, Vermoortele F, De Vos D. Catal. Sci. Technol., 2013, 3(6): 1435-1445  doi: 10.1039/c3cy20813c

    34. [34]

      Lv X L, Wang K C, Wang B, Su J, Zou X D, Xie Y B, Li J R, Zhou H C. J. Am. Chem. Soc., 2017, 139(1): 211-217  doi: 10.1021/jacs.6b09463

    35. [35]

      Bagheri M, Masoomi M Y, Morsali A, Schoedel A. ACS Appl. Mater. Interfaces, 2016, 8(33): 21472-21479  doi: 10.1021/acsami.6b06955

    36. [36]

      Wang B, Wang P L, Xie L H, Lin R B, Lv J, Li J R, Chen B L. Nat. Commun., 2019, 10(1): 1-8  doi: 10.1038/s41467-018-07882-8

    37. [37]

      Ke F, Qiu L G, Yuan Y P, Peng F M, Jiang X, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 196: 36-43  doi: 10.1016/j.jhazmat.2011.08.069

    38. [38]

      Zou F, Yu R H, Li R G, Li W. ChemPhysChem, 2013, 14(12): 28252832

    39. [39]

      Kobielska P A, Howarth A J, Farha O K, Nayak S. Coord. Chem. Rev., 2018, 358: 92-107  doi: 10.1016/j.ccr.2017.12.010

    40. [40]

      Li X X, Xu H Y, Kong F Z, Wang R H. Angew. Chem. Int. Ed., 2013, 52(51): 13769-13773  doi: 10.1002/anie.201307650

    41. [41]

      Fu H R, Xu Z X, Zhang J. Chem. Mater., 2015, 27(1): 205-210  doi: 10.1021/cm503767r

    42. [42]

      Wu Y Z, Xu G H, Liu W, Yang J, Wei F D, Li L, Zhang W, Hu Q. Microporous Mesoporous Mater., 2015, 210: 110-115  doi: 10.1016/j.micromeso.2015.02.032

    43. [43]

      Zhang Y Y, Feng X, Li H W, Chen Y F, Zhao J S, Wang S, Wang L, Wang B. Angew. Chem. Int. Ed., 2015, 54(14): 4259-4263  doi: 10.1002/anie.201500207

    44. [44]

      Zhang Q, Yu J C, Cai J F, Zhang L, Cui Y J, Yang Y, Chen B L, Qian J D. Chem. Commun., 2015, 51(79): 14732-14734  doi: 10.1039/C5CC05927E

    45. [45]

      Desai A V, Manna B, Karmakar A, Sahu A, Ghosh S K. Angew. Chem. Int. Ed., 2016, 55(27): 7811-7815  doi: 10.1002/anie.201600185

    46. [46]

      Ding B, Guo C, Liu S X, Cheng Y, Wu X X, Su X M, Liu Y Y, Li Y. RSC Adv., 2016, 6(40): 33888-33900  doi: 10.1039/C6RA03576K

    47. [47]

      Aboutorabi L, Morsali A, Tahmasebi E, Buyukgungor O. Inorg. Chem., 2016, 55(11): 5507-5513  doi: 10.1021/acs.inorgchem.6b00522

    48. [48]

      Lin Z J, Zheng H Q, Zheng H Y, Lin L P, Xin Q, Cao R. Inorg. Chem., 2017, 56(22): 14178-14188  doi: 10.1021/acs.inorgchem.7b02327

    49. [49]

      Guo M M, Guo H D, Liu S Y, Sun Y Y, Guo X M. RSC Adv., 2017, 7(80): 51021-51026  doi: 10.1039/C7RA09429A

    50. [50]

      Wu S B, Ge Y J, Wang Y Q, Chen X, Li F F, Xuan H, Li X. Environ. Technol., 2018, 39(15): 1937-1948  doi: 10.1080/09593330.2017.1344732

    51. [51]

      Fang Y, Wen J, Zeng G M, Jia F Y, Zhang S Y, Peng Z L, Zhang H B. Chem. Eng. J., 2018, 337: 532-540  doi: 10.1016/j.cej.2017.12.136

    52. [52]

      Bo S G, Ren W J, Lei C, Xie Y B, Cai Y R, Wang S L, Gao J K, Ni Q Q, Yao J M. J. Solid State Chem., 2018, 262: 135-141  doi: 10.1016/j.jssc.2018.02.022

    53. [53]

      He T, Zhang Y Z, Kong X J, Yu J M, Lv X L, Wu Y F, Guo Z J, Li J R. ACS Appl. Mater. Interfaces, 2018, 10(19): 16650-16659  doi: 10.1021/acsami.8b03987

    54. [54]

      Shokouhfar N, Aboutorabi L, Morsali A. Dalton Trans., 2018, 47(41): 14549-14555  doi: 10.1039/C8DT03196G

    55. [55]

      Samuel M S, Subramaniyan V, Bhattacharya J, Parthiban C, Chand S, Singh N D P. Composites Part B, 2018, 152: 116-125  doi: 10.1016/j.compositesb.2018.06.034

    56. [56]

      Zheng M Q, Zhao X D, Wang K K, She Y B, Gao Z Q. Ind. Eng. Chem. Res., 2019, 58(51): 23330-23337  doi: 10.1021/acs.iecr.9b04598

    57. [57]

      Shao Z C, Huang C, Wu Q, Zhao Y J, Xu W J, Liu Y Y, Dang J, Hou H W. J. Hazard. Mater., 2019, 378: 120719  doi: 10.1016/j.jhazmat.2019.05.112

    58. [58]

      Yang P F, Shu Y F, Zhuang Q X, Li Y S, Gu J L. Langmuir, 2019, 35(49): 16226-16233  doi: 10.1021/acs.langmuir.9b03057

    59. [59]

      Hu H J, Liu J Y, Xu Z H, Zhang L Y, Cheng B, Ho W K. Appl. Surf. Sci., 2019, 478: 981-990  doi: 10.1016/j.apsusc.2019.02.008

    60. [60]

      Jamshidifard S, Koushkbaghi S, Hosseini S, Rezaei S, Karamipour A, Rad J A, Irani M. J. Hazard. Mater., 2019, 368: 10-20  doi: 10.1016/j.jhazmat.2019.01.024

    61. [61]

      Li D W, Tian X J, Wang Z Q, Guan Z, Li X Q, Qiao H, Ke H Z, Luo L, Wei Q F. Chem. Eng. J., 2020, 383: 123127  doi: 10.1016/j.cej.2019.123127

    62. [62]

      Deng Y Y, Xiao X F, Wang D, Han B, Gao Y, Xue J L. J. Nanosci. Nanotechnol., 2020, 20(3): 1660-1669  doi: 10.1166/jnn.2020.17157

    63. [63]

      Zhang X R, Wang X, Fan W D, Wang Y T, Wang X K, Zhang K, Sun D F. Mater. Chem. Front., 2020, 4(4): 1150-1157  doi: 10.1039/C9QM00612E

    64. [64]

      Bai Y, Dou Y B, Xie L H, Rutledge W, Li J R, Zhou H C. Chem. Soc. Rev., 2016, 45(8): 2327-2367  doi: 10.1039/C5CS00837A

    65. [65]

      Wang B, Lv X L, Feng D W, Xie L H, Zhang J, Li M, Xie Y B, Li J R, Zhou H C. J. Am. Chem. Soc., 2016, 138(19): 6204-6216  doi: 10.1021/jacs.6b01663

    66. [66]

      Xu M M, Kong X J, He T, Wu X Q, Xie L H, Li J R. Inorg. Chem., 2018, 57(22): 14260-14268  doi: 10.1021/acs.inorgchem.8b02282

    67. [67]

      Wang Z, Yang J, Li Y S, Zhuang Q X, Gu J L. Chem. Eur. J., 2017, 23(61): 15415-15423  doi: 10.1002/chem.201702534

    68. [68]

      Connett P H, Wetterhahn K E. J. Am. Chem. Soc., 1986, 108(8): 18421847  doi: 10.1002/chin.198632247

    69. [69]

      Brauer S L, Wetterhahn K E. J. Am. Chem. Soc., 1991, 113(8): 30013007  doi: 10.1021/ja00008a031

    70. [70]

      Brauer S L, Hneihen A S, McBride J S, Wetterhahn K E. Inorg. Chem., 1996, 35(2): 373-381  doi: 10.1021/ic941452d

    71. [71]

      Shevchenko N, Zaitsev V, Walcarius A. Environ. Sci. Technol., 2008, 42(18): 6922-6928  doi: 10.1021/es800677b

    72. [72]

      Nataliya Z, Vladimir Z, Alain W. J. Hazard. Mater., 2013, 250-251: 454-461  doi: 10.1016/j.jhazmat.2013.02.019

    73. [73]

      Wang S A, Yu P, Purse B A, Orta M J, Diwu J, Casey W H, Phillips B L, Alekseev E V, Depmeier W, Hobbs D T, Albrecht-Schmitt T E. Adv. Funct. Mater., 2012, 22(11): 2241-2250  doi: 10.1002/adfm.201103081

    74. [74]

      Zhu L, Sheng D P, Xu C, Dai X, Silver M A, Li J, Li P, Wang Y X, Wang Y L, Chen, L H, Xiao C L, Chen J, Zhou R H, Zhang C, Farha O K, Chai Z F, Albrecht-Schmitt T E, Wang S A. J. Am. Chem. Soc., 2017, 139(42): 14873-14876  doi: 10.1021/jacs.7b08632

    75. [75]

      Sheng D P, Zhu L, Xu C, Xiao C L, Wang Y L, Wang Y X, Chen L H, Diwu J, Chen J, Chai Z F, Albrecht-Schmitt T E, Wang S A. Environ. Sci. Technol., 2017, 51(6): 3471-3479  doi: 10.1021/acs.est.7b00339

    76. [76]

      Li Y X, Yang Z X, Wang Y L, Bai Z L, Zheng T, Dai X, Liu S T, Gui D X, Liu W, Chen M, Chen L H, Diwu J, Zhu L Y, Zhou R H, Chai Z F, Albrecht-Schmitt T E, Wang S A. Nat. Commun., 2017, 8(1): 1-11  doi: 10.1038/s41467-016-0009-6

    77. [77]

      Mao J J, Ge M Z, Huang J Y, Lai Y K, Lin C J, Zhang K Q, Meng K, Tang Y X. J. Mater. Chem. A, 2017, 5(23): 11873-11881  doi: 10.1039/C7TA01343D

    78. [78]

      Yang J F, Zhao Q, Li J P, Dong J X. Microporous Mesoporous Mater., 2009, 130(1/2/3): 174-179  doi: 10.1016/j.micromeso.2009.11.001

    79. [79]

      Canioni R, Roch-Marchal C, Sécheresse F, Horcajada P, Serre C, Hardi-Dan M, Férey G, Grenèche J M, Lefebvre F, Chang J S, Hwang Y K, Lebedev O, Turner S, Van Tendeloo G. J. Mater. Chem., 2011, 21(4): 1226-1233  doi: 10.1039/C0JM02381G

    80. [80]

      Li A, Lin R J, Lin C, He B Y, Zheng T T, Lu L B, Cao Y. Carbohydr. Polym., 2016, 148: 272-280  doi: 10.1016/j.carbpol.2016.04.070

    81. [81]

      Mahmoud M E, Amira M F, Seleim S M, Mohamed A K. J. Hazard. Mater., 2020, 381: 120979  doi: 10.1016/j.jhazmat.2019.120979

  • 加载中
    1. [1]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    6. [6]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    7. [7]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    8. [8]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    16. [16]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    17. [17]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    20. [20]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

Metrics
  • PDF Downloads(164)
  • Abstract views(5542)
  • HTML views(2328)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return