Synergistically Catalytic Degradation of Azo Dyes by Ag/MgO
- Corresponding author: Tong WEI, weit@zstu.edu.cn
Citation:
Xiao-Hui ZHU, Zi-Wei GUO, Xiang-Dong LIU, Ren-Hong LI, Tong WEI. Synergistically Catalytic Degradation of Azo Dyes by Ag/MgO[J]. Chinese Journal of Inorganic Chemistry,
;2021, 37(3): 482-490.
doi:
10.11862/CJIC.2021.058
Ceretta M B, Vieira Y, Wolski E A, Foletto E L, Silvestri S. J. Water Process Eng. , 2020, 35: 101230
doi: 10.1016/j.jwpe.2020.101230
El-Wakiel N, El-Ghamry H. Int. J. Chem. Kinet. , 2017, 49: 464-476
doi: 10.1002/kin.21090
Wang Y, Wang H, Wang X, Xiao Y, Zhou Y, Su X, Cai J, Sun F. Sci. Total Environ. , 2020, 730: 139034
doi: 10.1016/j.scitotenv.2020.139034
Shen H, Xue W, Fu F, Sun J, Zhen Y, Wang D, Shao B, Tang J. Chem. Eur. J. , 2018, 24: 18463-18478
doi: 10.1002/chem.201804267
Shen J, Wang R, Liu Q Q, Yang X F, Tang H, Yang J. Chin. J. Catal. , 2019, 40: 380-389
doi: 10.1016/S1872-2067(18)63166-3
Shinde S L, Nanda K K. ACS Sustainable Chem. Eng. , 2019, 7: 66116618
Uribe Arizmendi I, Anducho Reyes M A, Ramirez Vargas M R, Cadena-Ramirez A, Muro-Urista C R, Tellez-Jurado A. Water Air Soil Pollut. , 2020, 231: 307
doi: 10.1007/s11270-020-04705-9
Brillas E. Chemosphere, 2020, 250: 126198
doi: 10.1016/j.chemosphere.2020.126198
Atta A M, Moustafa Y M, Al-Lohedan H A, Ezzat A O, Hashem A I. ACS Omega, 2020, 5: 2829-2842
doi: 10.1021/acsomega.9b03610
Khataee A R, Pons M N, Zahraa O. J. Hazard. Mater. , 2009, 168: 451457
Manjari G, Saran S, Radhakrishanan S, Rameshkumar P, Pandikumar A, Devipriya S P. J. Environ. Manage. , 2020, 262: 110282
doi: 10.1016/j.jenvman.2020.110282
El Nemr A, Hassaan M A, Madkour F F. Environ. Process Int. J. , 2018, 5: 95-113
doi: 10.1007/s40710-018-0284-9
Mahamuni N N, Adewuyi Y G. Ultrason. Sonochem. , 2010, 17: 9901003
Paixao K, Abreu E, Samanamud G R L, Franca A B, Loures C C A, Baston E P, Naves L L R, Bosch J C, Naves F L. J. Environ. Chem. Eng. , 2019, 7: 102801
doi: 10.1016/j.jece.2018.11.045
Mashkoor F, Nasar A. J. Magn. Magn. Mater. , 2020, 500: 166408
doi: 10.1016/j.jmmm.2020.166408
Biswas M M, Taylor K E, Bewtra J K, Biswas N. Water Environ. Res. , 2007, 79: 351-356
doi: 10.2175/106143006X111727
Pukdee-Asa M, Su C C, Ratanatamskul C, Lu M C. Color Technol. , 2012, 128: 28-35
doi: 10.1111/j.1478-4408.2011.00325.x
Thomas S, Sreekanth R, Sijumon V A, Aravind U K, Aravindakumar C T. Chem. Eng. J. , 2014, 244: 473-482
doi: 10.1016/j.cej.2014.01.037
Atarod M, Nasrollahzadeh M, Sajadi S M. J. Colloid Interface Sci. , 2016, 462: 272-279
doi: 10.1016/j.jcis.2015.09.073
Wu J M, Wen W. Environ. Sci. Technol. , 2010, 44: 9123-9127
doi: 10.1021/es1027234
Chen H, Motuzas J, Martens W, da Costa J C D. Appl. Catal. B, 2018, 221: 691-700
doi: 10.1016/j.apcatb.2017.09.056
Li R, Zhu X, Yan X, Kobayashi H, Yoshida S, Chen W, Du L, Qian K, Wu B, Zou S, Lu L, Yi W, Zhou Y, Fan J. ACS Catal. , 2017, 7: 1478-1484
doi: 10.1021/acscatal.6b03370
Chen S, Liang S P, Wu B L, Lan Z H, Guo Z W, Kobayashi H, Yan X Q, Li R. ACS Appl. Mater. Interfaces, 2019, 11: 33946-33954
doi: 10.1021/acsami.9b11023
Zhu X, Du L, Guo Z, Chen S, Wu B, Liu X, Yan X, Takeuchi N, Kobayashi H, Li R. Catal. Sci. Technol. , 2018, 8: 6217-6227
doi: 10.1039/C8CY01551A
Meitzner G. In Situ Spectroscopy in Heterogeneous Catalysis. Haw J F. ed., Weinheim: Wiley VCH Verlag GmbH, 2002: 179-194
Xu F, Meng K, Cheng B, Yu J, Ho W. ChemCatChem, 2018, 11: 465472
Gonchar A, Risse T, Freund H J, Giordano L, Di Valentin C, Pacchioni G. Angew. Chem. Int. Ed. , 2011, 50: 2635-2638
doi: 10.1002/anie.201005729
Pirozzi D, Imparato C, D'errico G, Vitiello G, Aronne A, Sannino F. J. Hazard. Mater. , 2020, 387: 121716
doi: 10.1016/j.jhazmat.2019.121716
Zhang C W, Li T Y, Zhang J Y, Yan S, Qin C Y. Appl. Catal. B, 2019, 259: 118030
doi: 10.1016/j.apcatb.2019.118030
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Reaction condition: 20 mL reaction solution, initial AR1 concentration: 0.1 mmol·L-1, initial HCHO concentration: 1 mol·L-1, room temperature, catalyst dosage: 20 mg
Reaction condition: 20 mL reaction solution, initial AR1 concentration: 0.1 mmol·L-1, initial HCHO concentration: 1 mol·L-1, room temperature, catalyst dosage: 20 mg
Reaction condition: 20 mL reaction solution, initial AR1 concentration: 0.1 mmol·L-1, initial HCHO concentration: 0~5 mol·L-1, room temperature, catalyst dosage: 20 mg
Inset: picture of reaction solution under two different atmospheres after 2 h; Reaction condition: 20 mL reaction solution, initial AR1 concentration: 0.1 mmol·L-1, initial HCHO concentration: 1 mol· L-1, room temperature, catalyst dosage: 20 mg
Reaction condition: 20 mL reaction solution, initial AR1 concentration: 0.1 mmol·L-1, initial HCHO concentration: 1 mol·L-1, room temperature, catalyst dosage: 20 mg
Reaction condition: 20 mL reaction solution, initial AO7 concentration: 50 μmol·L-1, initial AR2 concentration: 0.1 mmol·L-1, initial HCHO concentration: 1 mol·L-1, temperature: 25 ℃, catalyst dosage: 20 mg
Reaction condition: temperature: 25 ℃, initial AR1 concentration: 0.1 mmol·L-1, initial HCHO concentration: 1 mol·L-1, catalyst dosage: 20 mg, DMPO: 0.1 mol·L-1, 50 μL
Reaction condition: temperature: 25 ℃, initial AR1 concentration: 0.1 mmol·L-1, initial HCHO concentration: 1 mol·L-1, catalyst dosage: 20 mg, DMPO: 0.1 mol·L-1, 50 μL