Citation: Hui-Hui CUI, Tong-Ming SUN, Miao WANG, Lei CHEN, Yan-Feng TANG. Magnetic Anisotropy of High-Coordinated 3d Transition-Metal Single-Ion Magnets[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(2): 193-205. doi: 10.11862/CJIC.2021.044 shu

Magnetic Anisotropy of High-Coordinated 3d Transition-Metal Single-Ion Magnets

Figures(16)

  • For its magnetic bistability and slow relaxation process, single-ion magnets (SIMs) have unique potential applications in high-density information storage, quantum computation and molecular spintronics. 3d transitionmetal-based single ion magnets (3d-SIMs) have attracted intensive interest because of their simple structure, easily exploring the magneto-structural relationship. Up to now, most of the 3d-SIMs reported in the literature usually have low coordination numbers, while knowledge on the high-coordinated (sevenand eight-coordinated) 3d-SIMs is still quite limited, especially for its efficient design and controllable manipulation. This project investigates the singleion magnetic anisotropy from three aspects, including basic properties, experimental characterization and theoretical calculation. Based on the research results in recent years, we summarize the coordination environment, magnetic anisotropy and slow magnetic relaxation behavior of the high-coordinated 3d-SIMs, and analyze the influence of the coordination environment, including coordination geometry and coordinated atoms, on the magnetic anisotropy of highcoordinated 3d-SIMs. This work will provide new routes in designing new high-coordinated 3d-SIMs with excellent properties.
  • 加载中
    1. [1]

      Buschowand K H J, de Boer F R. Physics of Magnetic Materials.[J]. World Scientific, 1985.

    2. [2]

      Sessoli R, Gatteschi D, Caneschi A, Novak M A. Nature, 1993, 365:141-143  doi: 10.1038/365141a0

    3. [3]

      Leuenberger M N, Loss D. Nature, 2001, 410:789-793  doi: 10.1038/35071024

    4. [4]

      Bogani L, Wernsdorfer W. Nat. Mater., 2008, 7:179-186  doi: 10.1038/nmat2133

    5. [5]

      Wernsdorfer W, Sessoli R. Science, 1999, 284:133-135  doi: 10.1126/science.284.5411.133

    6. [6]

      Waldmann O. Inorg. Chem., 2007, 46:10035-10037  doi: 10.1021/ic701365t

    7. [7]

      Feltham H L C, Brooker S. Coord. Chem. Rev., 2014, 276:1-33  doi: 10.1016/j.ccr.2014.05.011

    8. [8]

      Feng M, Tong M L. Chem. Eur. J., 2018, 24:7574-7594  doi: 10.1002/chem.201705761

    9. [9]

      Freedman D E, Harman W H, Harris T D, Long G J, Chang C J, Long J R. J. Am. Chem. Soc., 2010, 132:1224-1225  doi: 10.1021/ja909560d

    10. [10]

      Bara A K, Pichona C, Suttera J P. Coord. Chem. Rev., 2016, 308:346-380  doi: 10.1016/j.ccr.2015.06.013

    11. [11]

      Bunting P C, Atanasov M, Damgaard-Møller E, Perfetti M, Crassee I, Orlita M, Overgaard J, van Slageren J, Neese F, Long J R. Science, 2018, 362:eaat7319  doi: 10.1126/science.aat7319

    12. [12]

      Yao X N, Du J Z, Zhang Y Q, Leng X B, Yang M W, Jiang S D, Wang Z X, Ouyang Z W, Deng L, Wang B W, Gao S. J. Am. Chem. Soc., 2017, 139:373-380  doi: 10.1021/jacs.6b11043

    13. [13]

      Power P P. Chem. Rev., 2012, 112:3482-3507  doi: 10.1021/cr2004647

    14. [14]

      Mannini M, Pineider F, Danieli C, Totti F, Sorace L, Arrio M A, Otero E, Joly L, Cezar J C, Cornia A, Sessoli R. Nature, 2010, 468:417-421  doi: 10.1038/nature09478

    15. [15]

      Coulon C, Miyasaka H, Clérac R. Struct. Bonding, 2006, 122:163-206

    16. [16]

      Ribas J. Coordination Chemistry. Weinheim:Wiley-VCH, 2008.

    17. [17]

      Gómez-Coca S, Urtizberea A, Cremades E, Alonso P J, Camón A, Ruiz E, Luis F. Nat. Commun., 2014, 5:4300  doi: 10.1038/ncomms5300

    18. [18]

      Gerloch M. Magnetism and Ligand-Field Analysis. Cambridge:Cambridge University Press, 1983.

    19. [19]

      Gatteschi D, Barra A L, Caneschi A, Cornia A, Sessoli R, Sorace L. Coord. Chem. Rev., 2006, 250:1514-1529  doi: 10.1016/j.ccr.2006.02.006

    20. [20]

      Duboc C, Phoeung T, Zein S, Pecaut J, Collomb M N, Neese F. Inorg. Chem., 2007, 46:4905-4916  doi: 10.1021/ic062384l

    21. [21]

      Andres H, Basler R, Güdel H U, Aromí G, Christou G, Büttner H, Ruffléet B. J. Am. Chem. Soc., 2000, 122:12469-12477  doi: 10.1021/ja0009424

    22. [22]

      Caciuffo R, Guidi T, Amoretti G, Carretta S, Liviotti E, Santini P, Mondelli C, Timco G, Muryn C A, Winpenny R E P. Phys. Rev. B, 2005, 71:174407  doi: 10.1103/PhysRevB.71.174407

    23. [23]

      Pedersen K S, Woodruff D N, Bendix J, Clérac R. Experimental Aspects of Lanthanide Single-molecule Magnet Physics, in:Lanthanides and Actinides in Molecular Magnetism. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2015:125-152

    24. [24]

      Kahn O. Acc. Chem. Res., 2000, 33:647-657  doi: 10.1021/ar9703138

    25. [25]

      Andres H, Bominaar E L, Smith J M, Eckert N A, Holland P L, Munck E. J. Am. Chem. Soc., 2002, 124:3012-3025  doi: 10.1021/ja012327l

    26. [26]

      Bart S C, Chłopek K, Bill E, Bouwkamp M W, Lobkovsky E, Neese F, Wieghardt K, Chirik P J. J. Am. Chem. Soc., 2006, 128:13901-13912  doi: 10.1021/ja064557b

    27. [27]

      Harman W H, Harris T D, Freedman D E, Fong H, Chang A, Rinehart J D, Ozarowski A, Sougrati M T, Grandjean F, Long G J. J. Am. Chem. Soc., 2010, 132:18115-18126  doi: 10.1021/ja105291x

    28. [28]

      Bernot K, Luzon J, Bogani L, Etienne M, Sangregorio C, Shanmugam M, Caneschi A, Sessoli R, Gatteschi D. J. Am. Chem. Soc., 2009, 131:5573-5579  doi: 10.1021/ja8100038

    29. [29]

      Boulon M E, Cucinotta G, Luzon J, Degl'Innocenti C, Perfetti M, Bernot K, Calvez G, Caneschi A, Sessoli R. Angew. Chem. Int. Ed., 2013, 52:350-354  doi: 10.1002/anie.201205938

    30. [30]

      Chen L, Zhou J J, Cui H H, Yuan A H, Wang Z X, Zhang Y Q, Ouyang Z W, Song Y. Dalton Trans., 2018, 47:2506-2510  doi: 10.1039/C7DT04651K

    31. [31]

      Lloret F, Julve M, Cano J, Ruiz-Garcia R, Pardo E. Inorg. Chim. Acta, 2008, 361:3432-3445  doi: 10.1016/j.ica.2008.03.114

    32. [32]

      Titiš J, Boča R. Inorg. Chem., 2011, 50:11838-11845  doi: 10.1021/ic202108j

    33. [33]

      Chilton N F, Anderson R P, Turner L D, Soncini A, Murray K S. J. Comput. Chem., 2013, 34:1164-1175  doi: 10.1002/jcc.23234

    34. [34]

      Noodleman L, Baerends E J. J. Am. Chem. Soc., 1984, 106:2316-2327  doi: 10.1021/ja00320a017

    35. [35]

      Malmqvist P Å, Roos B O. Chem. Phys. Lett., 1989, 155:189-194  doi: 10.1016/0009-2614(89)85347-3

    36. [36]

      Wolinski K, Pulay P. J. Chem. Phys., 1989, 90:3647-3659  doi: 10.1063/1.456696

    37. [37]

      Andersson K, Malmqvist P Å, Roos B O, Sadlej A J, Wolinski K. J. Phys. Chem., 1990, 94:5483-5488  doi: 10.1021/j100377a012

    38. [38]

      Andersson K, Malmqvist P Å, Roos B O. J. Chem. Phys., 1992, 96:1218-1226  doi: 10.1063/1.462209

    39. [39]

      Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu J P. J. Chem. Phys., 2001, 114:10252-10264  doi: 10.1063/1.1361246

    40. [40]

      Angeli C, Cimiraglia R, Malrieu J P. Chem. Phys. Lett., 2001, 350:297-305  doi: 10.1016/S0009-2614(01)01303-3

    41. [41]

      Angeli C, Cimiraglia R, Malrieu J P. J. Chem. Phys., 2002, 117:9138-9153  doi: 10.1063/1.1515317

    42. [42]

      Ganyushin D, Neese F. J. Chem. Phys., 2006, 125:024103  doi: 10.1063/1.2213976

    43. [43]

      Maurice R, de Graaf C, Guihéry N. J. Chem. Phys., 2010, 133:084307  doi: 10.1063/1.3480014

    44. [44]

      Bar A K, Pichon C, Gogoi N, Duhayon C, Ramasesha S, Sutter J P. Chem. Commun., 2015, 51:3616-3619  doi: 10.1039/C4CC10182K

    45. [45]

      Bar A K, Gogoi N, Pichon C, Goli V M L D P, Thlijeni M, Duhayon C, Suaud N, Guihéry N, Barra A L, Ramasesha S, Sutter J P. Chem. Eur. J., 2017, 23:4380-4396  doi: 10.1002/chem.201605549

    46. [46]

      Shao D, Zhao X H, Zhang S L, Wu D Q, Wei X Q, Wang X Y. Inorg. Chem. Front., 2015, 2:846-853  doi: 10.1039/C5QI00089K

    47. [47]

      Huang X C, Zhou C, Shao D, Wang X Y. Inorg. Chem., 2014, 53:12671-12673  doi: 10.1021/ic502006s

    48. [48]

      Shao D, Zhang, S L, Shi L, Zhang Y Q, Wang X Y. Inorg. Chem., 2016, 55:10859-10869  doi: 10.1021/acs.inorgchem.6b00854

    49. [49]

      Shao D, Shi L, Zhang S L, Zhao X H, Wu D Q, Wei X Q, Wang X Y. CrystEngComm, 2016, 18:4150-4157  doi: 10.1039/C5CE02594J

    50. [50]

      Shao D, Shi L, Shen F X, Wang X Y. CrystEngComm, 2017, 19:5707-5711  doi: 10.1039/C7CE01436H

    51. [51]

      Shao D, Zhou Y, Pi Q, Shen F X, Yang S R, Zhang S L, Wang X Y. Dalton Trans., 2017, 46:9088-9096  doi: 10.1039/C7DT01893B

    52. [52]

      Habib F, Korobkov I, Murugesu M. Dalton Trans., 2015, 44:6368-6373  doi: 10.1039/C5DT00258C

    53. [53]

      Mondal A, Kharwar A K, Konar S. Inorg. Chem., 2019, 58:10686-10693  doi: 10.1021/acs.inorgchem.9b00615

    54. [54]

      Mondal A K, Mondal A, Dey B, Konar S. Inorg. Chem., 2018, 57:9999-10008  doi: 10.1021/acs.inorgchem.8b01162

    55. [55]

      Kopotkov V A, Korchagin D V, Sasnovskaya V D, Gilmutdinov I F, Yagubskii E B. Magnetochemistry, 2019, 5:58  doi: 10.3390/magnetochemistry5040058

    56. [56]

      Antal P, Drahoš B, Herchel R, Travníček Z. Inorg. Chem., 2016, 55:5957-5972  doi: 10.1021/acs.inorgchem.6b00415

    57. [57]

      Drahoš B, Herchel R, Travníček Z. Inorg. Chem., 2017, 56:5076-5088  doi: 10.1021/acs.inorgchem.7b00235

    58. [58]

      Antal P, Drahoš B, Herchel R, Trávníček Z. Eur. J. Inorg. Chem., 2018, 38:4286-4297

    59. [59]

      Drahoš B, Císařová I, Laguta O, Santana V T, Neugebauer P, Herchel R. Dalton Trans., 2020, 49:4425-4440  doi: 10.1039/D0DT00166J

    60. [60]

      Lou H D, Yin L, Zhang B Q, Ouyang Z W, Li B, Wang Z X. Inorg. Chem., 2018, 57:7757-7762  doi: 10.1021/acs.inorgchem.8b00812

    61. [61]

      Uchida K, Cosquer G, Sugisaki K, Matsuoka H, Sato K, Breedlove B K, Yamashita M. Dalton Trans., 2019, 48:12023-12030  doi: 10.1039/C8DT02150C

    62. [62]

      Hay M A, McMonagle C J, Wilson C, Probert M R, Murrie M. Inorg. Chem., 2019, 58:9691-9697  doi: 10.1021/acs.inorgchem.9b00515

    63. [63]

      Chen L, Chen S Y, Sun Y C, Guo Y M, Yu L, Chen X T, Wang Z X, Ouyang Z W, Song Y, Xue Z L. Dalton Trans., 2015, 44:11482-11490  doi: 10.1039/C5DT00785B

    64. [64]

      Wang J, Cui H H, Zhang Y Q, Chen L, Chen X T. Polyhedron, 2018, 154:148-155  doi: 10.1016/j.poly.2018.07.050

    65. [65]

      Chen L, Cui H H, Stavretis S E, Hunter S C, Zhang Y Q, Chen X T, Sun Y C, Wang Z X, Song Y, Podlesnyak A A, Ouyang Z W, Xue Z L. Inorg. Chem., 2016, 55:12603-12617  doi: 10.1021/acs.inorgchem.6b01544

    66. [66]

      Yi G J, Cui H H, Zhang C Y, Zhao W, Chen L, Zhang Y Q, Chen X T, Song Y, Yuan A H. Dalton Trans., 2020, 49:2063-2067  doi: 10.1039/C9DT04881B

    67. [67]

      Yi G J, Zhang C Y, Zhao W, Cui H H, Chen L, Wang Z X, Chen X T, Yuan A H, Liu Y Z, Ouyang Z W, Dalton Trans., 2020, 49: 7620-7627

    68. [68]

      Huang X C, Xu R, Chen Y Z, Zhang Y Q, Shao D. Chem.-Asian J., 2020, 15:279-286  doi: 10.1002/asia.201901395

    69. [69]

      Ruamps R, Batchelor L J, Maurice R, Gogoi N, Jimenez-Lozano P, Guihery N, de Graaf C, Barra A L, Sutter J P, Mallah T. Chem. Eur. J., 2013, 19:950-956  doi: 10.1002/chem.201202492

    70. [70]

      Chen L, Wang J, Wei J M, Wernsdorfer W, Chen X T, Zhang Y Q, Song Y, Xue Z L. J. Am. Chem. Soc., 2014, 136:12213-12216  doi: 10.1021/ja5051605

    71. [71]

      Wei J M, Zhang Y Q. Inorg. Chem., 2015, 54:1203-1205  doi: 10.1021/ic502840s

    72. [72]

      Stavretis S E, Moseley D H, Fei F, Cui H H, Cheng Y Q, Podlesnyak A A, Wang X P, Daemen L L, Hoffmann C M, Ozerov M, Lu Z G, Thirunavukkuarasu K, Smirnov D, Chang T, Chen Y S, Ramirez-Cuesta A J, Chen X T, Xue Z L. Chem. Eur. J., 2019, 25:15846-15857  doi: 10.1002/chem.201903635

    73. [73]

      Xiang J, Liu J J, Chen X X, Jia L H, Yu F, Wang B W, Gao S, Lau T C. Chem. Commun., 2017, 53:1474-1477  doi: 10.1039/C6CC09801K

    74. [74]

      Jin X X, Chen X X, Xiang J, Chen Y Z, Jia L H, Wang B W, Cheng S C, Zhou X, Leung C F, Gao S. Inorg. Chem., 2018, 57:3761-3774  doi: 10.1021/acs.inorgchem.7b03071

    75. [75]

      Li G L, Wu S Q, Zhang L F, Wang Z X, Ouyang Z W, Ni Z H, Su S Q, Yao Z S, Li J Q, Sato O. Inorg. Chem., 2017, 56:8018-8025  doi: 10.1021/acs.inorgchem.7b00765

    76. [76]

      Huang X C, Qi Z Y, Ji C L, Guo Y M, Yan S C, Zhang Y Q, Shao D, Wang X Y. Dalton Trans., 2018, 47:8940-8948  doi: 10.1039/C8DT01829D

  • 加载中
    1. [1]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    2. [2]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    3. [3]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    4. [4]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    5. [5]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    6. [6]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    7. [7]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    8. [8]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    9. [9]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    15. [15]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    18. [18]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    19. [19]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    20. [20]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

Metrics
  • PDF Downloads(27)
  • Abstract views(2333)
  • HTML views(596)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return