Citation: LIU De-Zheng, YANG Gao-Yuan, XIANG Wen-Hao, WANG Song, LI Wang-Nan, ZHONG Jie, HUANG Fu-Zhi, CHEN Mei-Hua, LIANG Gui-Jie. Perovskite Solar Cells Based on 1D/0D Ordered Composite SnO2 Nanocrystal[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(1): 85-94. doi: 10.11862/CJIC.2021.005 shu

Perovskite Solar Cells Based on 1D/0D Ordered Composite SnO2 Nanocrystal

Figures(8)

  • Novel 1D/0D ordered composite SnO2 nanocrystal electron transport layer (ETL) for pervoskite solar cells has been prepared by adjusting the density of one-dimensional (1D) nanorod arrays through adding functional additives in hydrothermal precursors, followed by depositing zero-dimensional (0D) nanoparticles between the nanorods. The effect of the NaCl additives in the precursor and the subsequent deposition of nanoparticles on the morphology, optical and interfacial charge transfer properties of the composite ETL was systematically studied, and the mechanism of the above effects on the photovoltaic performance of the device was discussed. The results show that the addition of NaCl in the precursor thins the rods' density, so that the following 0D nanoparticles penetrated smoothly into the gaps of 1D nanorods, inducing the obvious inhibitory effect on the perovskite/ETL and perovskite/FTO interface charge recombination, which is the direct reason for the increase in open circuit voltage and fill factor of the device. In summary, the excellent charge recombination inhibition (composite resistance was 2.9 times that of conventional 1D nanorod arrays ETL-2Cl) and efficient electron extraction performance (extraction rate and efficiency were 3.03×107 s-1 and 91.6%, respectively) of the novel 1D/0D ordered composite ETL-2P contributed to the better photoelectric performance of the device (with photoelectric efficiency of 12.15%).
  • 加载中
    1. [1]

      Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17):6050-6051  doi: 10.1021/ja809598r

    2. [2]

      Im J H, Lee C R, Lee J W, Park S W, Park N G. Nanoscale, 2011, 3(10):4088-4093  doi: 10.1039/c1nr10867k

    3. [3]

      Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Sci. Rep., 2012, 2(1):591-597

    4. [4]

      Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Science, 2012, 338(6107):643-647  doi: 10.1126/science.1228604

    5. [5]

      Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M. Nature, 2013, 499(7458):316-319  doi: 10.1038/nature12340

    6. [6]

      Jeon N J, Nam N J, Kim Y C, Yang W S, Ryu S, Seok S I. Nat. Mater., 2014, 13(9):897-903  doi: 10.1038/nmat4014

    7. [7]

      Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I. Nature, 2015, 517(7535):476-480  doi: 10.1038/nature14133

    8. [8]

      Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Science, 2017, 356(6345):1376-1379  doi: 10.1126/science.aan2301

    9. [9]

      Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B. Nat. Photonics, 2019, 13(7):460-466  doi: 10.1038/s41566-019-0398-2

    10. [10]

      Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J. J. Am. Chem. Soc., 2016, 138(49):15829-15832  doi: 10.1021/jacs.6b10227

    11. [11]

      Liang J, Zhao P Y, Wang G X, Wang Y R, Hu Y, Zhu G Y, Ma L B, Liu J, Jin Z. J. Am. Chem. Soc., 2017, 139(40):14009-14012  doi: 10.1021/jacs.7b07949

    12. [12]

      Liang J, Wang J, Jin Z. Solar RRL, 2017, 1(10):1700086  doi: 10.1002/solr.201700086

    13. [13]

      Liang J, Wang C X, Zhao P Y, Lu Z P, Ma Y, Xu Z R, Wang Y R, Zhu H F, Hu Y, Zhu G Y, Ma L B, Chen T, Tie Z X, Liu J, Jin Z. Nanoscale, 2017, 9(33):11841-11845  doi: 10.1039/C7NR03530F

    14. [14]

      Ma L B, Zhang W J, Zhao P Y, Liang J, Hu Y, Chen R P, Tie Z X, Liu J, Jin Z. J. Mater. Chem. A, 2018, 6(41):20076-20082  doi: 10.1039/C8TA08116F

    15. [15]

      Liang J, Zhu G Y, Wang G X, Zhao P Y, Wang Y R, Hu Y, Ma L B, Tie Z X, Liu J, Jin Z. Nano Energy, 2018, 52:239-245

    16. [16]

      NREL, Best Research-Cell Efficiencies Chart, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200218.pdf

    17. [17]

      Sun C, Wu Z H, Yip H L, Zhang H, Jiang X F, Xue Q F, Hu Z C, Hu Z H, Shen Y, Wang M K, Huang F, Cao Y. Adv. Energy Mater., 2016, 6(5):1501534-1501543  doi: 10.1002/aenm.201501534

    18. [18]

      Xu X B, Liu Z H, Zuo Z X, Zhang M, Zhao Z X, Shen Y, Zhou H P, Chen Q, Yang Y, Wang M K. Nano Lett., 2015, 15(4):2402-2408

    19. [19]

      Zuo L J, Guo H X, deQuilettes D W, Jariwala S, Marco N D, Dong S Q, DeBlock R, Ginger D S, Dunn B, Wang M K, Yang Y. Sci. Adv., 2017, 3(8):e1700106-e1700116  doi: 10.1126/sciadv.1700106

    20. [20]

      Son D Y, Im J H, Kim H S, Park N G. J. Phys. Chem. C, 2014, 118(30):16567-16573  doi: 10.1021/jp412407j

    21. [21]

      Hu G F, Guo W X, Yu R M, Yang X N, Zhou R R, Pan C F, Wang Z L. Nano Energy, 2016, 23:27-33  doi: 10.1016/j.nanoen.2016.02.057

    22. [22]

      Haque M A, Sheikh A, Guan X, Wu T. Adv. Energy Mater., 2017, 7(20):1602803-1602825  doi: 10.1002/aenm.201602803

    23. [23]

      Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J. Nat. Commun., 2013, 4(1):2885-2891

    24. [24]

      Li W Z, Zhang W, Reenen S V, Sutton R J, Fan J D, Haghighirad A A, Johnston M B, Wang L D, Snaith H J. Energy Environ. Sci., 2016, 9(2):490-498

    25. [25]

      Yang J L, Siempelkamp B D, Mosconi E, Angelis F D, Kelly T L. Chem. Mater., 2015, 27(12):4229-4236  doi: 10.1021/acs.chemmater.5b01598

    26. [26]

      KıLıÇ Ç, Zunger A. Phys. Rev. Lett., 2002, 88:095501-095504  doi: 10.1103/PhysRevLett.88.095501

    27. [27]

      Zhang C X, Deng X S, Zheng J F, Zhou X, Shi J H, Chen X H, Sun Z, Huang S M. Electrochim. Acta, 2018, 283:1134-1145  doi: 10.1016/j.electacta.2018.07.028

    28. [28]

      Liu C W, Zhu R X, Ng A, Ren Z W, Cheung S H, Du L L, So S K, Zapien J A, Djurišić A B, Phillips D L, Surya C. J. Mater. Chem. A, 2017, 5(30):15970-15980  doi: 10.1039/C7TA03710D

    29. [29]

      Mahmood K, Swain B S, Amassian A. Adv. Energy Mater., 2015, 5(17):1500568-1500578  doi: 10.1002/aenm.201500568

    30. [30]

      Bi D, Boschloo G, Schwarzmüller S, Yang L, Johansson E M J, Hag-feldt A. Nanoscale, 2013, 5(23):11686-11691  doi: 10.1039/c3nr01542d

    31. [31]

      Zhao X Y, Shen H P, Sun R J, Luo Q, Li X, Zhou Y, Tai M Q, Li J B, Gao Y F, Li X, Lin H. Solar RRL, 2018, 2(5):1700194-1700202  doi: 10.1002/solr.201700194

    32. [32]

      Yang L K, Wang X, Mai X M, Wang T, Wang C, Li X, Murugadoss V, Shao Q, Angaiah S, Guo Z H. J. Colloid Interface Sci., 2019, 534:459-468  doi: 10.1016/j.jcis.2018.09.045

    33. [33]

      Chen M M, Wan L, Kong M Q, Hu H, Gan Y S, Wang J, Chen F X, Guo Z G, Eder D, Wang S M. J. Alloys Compd., 2017, 738:422-431

    34. [34]

      Li S B, Zhang P, Wang Y F, Sarvari H, Liu D T, Wu J, Yang Y J, Wang Z M, Chen Z D. Nano Res., 2017, 10:1092-1103  doi: 10.1007/s12274-016-1407-0

    35. [35]

      Zhang X K, Rui Y C, Wang Y Q, Xu J L, Wang H Z, Zhang Q H, Müller-Buschbaun P. J. Power Sources, 2018, 402:460-467  doi: 10.1016/j.jpowsour.2018.09.072

    36. [36]

      Vayssieres L, Chanéac C, Tronc E, Jolivet J P J. J. Colloid Interface Sci., 1998, 205(2):205-212

    37. [37]

      Liu B, Aydil E S. J. Am. Chem. Soc., 2009, 131(11):3985-3990  doi: 10.1021/ja8078972

    38. [38]

      Hosono E, Fujihara S, Kakiuchi K, Imai H J. J. Am. Chem. Soc., 2004, 126(25):7790-7791  doi: 10.1021/ja048820p

    39. [39]

      Feng X J, Zhai J, Jiang L. Angew. Chem., 2005, 44(32):5115-5118  doi: 10.1002/anie.200501337

    40. [40]

      Baena J P C, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson T J, Kandada A R S, Zakeeruddin S M, Petro-zza A, Abate A, Nazeeruddin M K, Grätzel M, Hagfeldt A. Energy Environ. Sci., 2015, 8(10):2928-2934

    41. [41]

      Song J X, Zheng E Q, Bian J, Wang X F, Tian W J, Sanehira Y, Mi-yasaka T. J. Mater. Chem. A, 2015, 3(20):10837-10844  doi: 10.1039/C5TA01207D

    42. [42]

      Xue J J, Wang R, Wang K L, Wang Z K, Yavuz I, Wang Y, Yang Y G, Gao X Y, Huang T Y, Nuryyeva S, Lee J W, Duan Y, Liao L S, Kaner R, Yang Y. J. Am. Chem. Soc., 2019, 141(35):13948-13953

    43. [43]

      Li J C, Dong X F, Liu T, Liu H L, Wang S R, Li X G. ACS Appl. Mater. Interfaces, 2020, 12(17):19439-19446  doi: 10.1021/acsami.0c00762

    44. [44]

      ZHANG D N, LIU J, LI W N, CHEN M H, WANG J Y, WU K F, LIANG G J. Science Sinica Chimica, 2018, 48(1):74-84
       

    45. [45]

      Wang Q, Ito S, Grätzel M, Fabregat-Santiago F, Mora-SeróI, Bisquert J, Bessho T, Imai H J. J. Phys. Chem. B, 2006, 110(50):25210-25221  doi: 10.1021/jp064256o

  • 加载中
    1. [1]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    2. [2]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    4. [4]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    8. [8]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    9. [9]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    10. [10]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    11. [11]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    12. [12]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    15. [15]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    16. [16]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    17. [17]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

Metrics
  • PDF Downloads(9)
  • Abstract views(1884)
  • HTML views(434)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return