Citation: ZHANG Dian-Yu, LIU Fang, DU Peng-Fei, LI Meng-Wei, WU Zhao-Xuan, FENG Yi-Bing, ZHAO Yang, XU Xiao-Yan, ZHANG Xin-Xing, LU Jun-Ling, YANG Bing. Dynamic Formation of Pdδ+-Fe2+ Interface Promoting Reverse Water Gas Shift Reaction over Pd/FeOx Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(1): 140-150. doi: 10.11862/CJIC.2021.002 shu

Dynamic Formation of Pdδ+-Fe2+ Interface Promoting Reverse Water Gas Shift Reaction over Pd/FeOx Catalyst

  • Corresponding author: YANG Bing, byang@dicp.ac.cn
  • Received Date: 29 June 2020
    Revised Date: 21 October 2020

Figures(5)

  • We systematically investigated Pd/FeOx for the reverse water gas shift (RWGS) reaction using a combination of ex situ and in situ characterizations, including transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, temperature-programmed desorption/reduction/oxidation (TPD/TPR/TPO), and X-ray photoelectron spectroscopy (XPS). A highly dispersed Pd/FeOx catalyst was synthesized using Pd(acac)2 as the precursor. The catalyst exhibited high activity, with CO2 conversion of ~29% and CO selectivity ogreater than 98% at 400℃, which are among the highest values in the literature. Moreover, Pd/SiO2 and Pd-Fe/SiO2 were further studied to determine the significant role of the Pd-FeOx interface in promoting the RWGS reaction. Semi-in situ XPS revealed the dynamic formation of Pdδ+-Fe2+ species at the Pd-FeOx interface; the species acted as highly active sites for CO2 dissociation. Our results also showed the formation of the Pdδ+-Fe2+ interface during the RWGS reaction remarkably enhanced the activity and selectivity of the Pd-FeOx catalyst for the reaction, benefiting CO2 adsorption, C=O dissociation, and CO desorption.
  • 加载中
    1. [1]

      Li W H, Wang H Z, Jiang X, Zhu J, Liu Z M, Guo X W, Song C S. RSC Adv., 2018, 8(14):7651-7669  doi: 10.1039/C7RA13546G

    2. [2]

      Dorner R W, Hardy D R, Williams F W, Willauer H D. Energy Environ. Sci., 2010, 3(7):884-890  doi: 10.1039/c001514h

    3. [3]

      Wang W, Wang S P, Ma X B, Gong J L. Chem. Soc. Rev., 2011, 40(7):3703-3727  doi: 10.1039/c1cs15008a

    4. [4]

      Daza Y A, Kuhn J N. RSC Adv., 2016, 6(55):49675-49691  doi: 10.1039/C6RA05414E

    5. [5]

      Parkinson G S. Surf. Sci. Rep., 2016, 71(1):272-365

    6. [6]

      Liu M, Yi Y H, Wang L, Guo H C, Bogaerts A. Catalysts, 2019, 9(3):275  doi: 10.3390/catal9030275

    7. [7]

      Carrasquillo-Flores R, Ro I, Kumbhalkar M D, Burt S, Carrero C A, Alba-Rubio A C, Miller J T, Hermans I, Huber G W, Dumesic J A. J. Am. Chem. Soc., 2015, 137(32):10317-10325  doi: 10.1021/jacs.5b05945

    8. [8]

      Yan Y, Wang Q J, Jiang C Y, Yao Y, Lu D, Zheng J W, Dai Y H, Wang H M, Yang Y H. J. Catal., 2018, 367:194-205  doi: 10.1016/j.jcat.2018.08.026

    9. [9]

      Halder A, Kilianová M, Yang B, Tyo E C, Seifert S, Prucek R, Panáček A, Suchomel P, Tomanec O, Gosztola D J, Milde D, Wang H H, Kvítek L, Zbořil R, Vajda S. Appl. Catal. B, 2018, 225:128-138  doi: 10.1016/j.apcatb.2017.11.047

    10. [10]

      Kattel S, Yan B H, Chen J G, Liu P. J. Catal., 2016, 343:115-126  doi: 10.1016/j.jcat.2015.12.019

    11. [11]

      Kim S S, Park K H, Hong S C. Fuel Process. Technol., 2013, 108:47-54  doi: 10.1016/j.fuproc.2012.04.003

    12. [12]

      Chen Y, Lin J, Li L, Qiao B T, Liu J Y, Su Y, Wang X D. ACS Catal., 2018, 8(2):859-868

    13. [13]

      Alayoglu S, Beaumont S K, Zheng F, Pushkarev V V, Zheng H M, Iablokov V, Liu Z, Guo J H, Kruse N, Somorjai G A. Top. Catal., 2011, 54(13/14/15):778-785

    14. [14]

      Zhang Y L, Fu D L, Liu X L, Zhang Z P, Zhang C, Shi B F, Xu J, Han Y F. ChemCatChem, 2018, 10(6):1272-1276  doi: 10.1002/cctc.201701779

    15. [15]

      Fujita S. J. Catal., 1992, 134(1):220-225

    16. [16]

      Goguet A, Meunier F C, Tibiletti D, Breen J P, Burch R. J. Phys. Chem. B, 2004, 108(52):20240-20246  doi: 10.1021/jp047242w

    17. [17]

      Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T. J. Catal., 1999, 188(1):176-185

    18. [18]

      Bobadilla L F, Santos J L, Ivanova S, Odriozola J A, Urakawa A. ACS Catal., 2018, 8(8):7455-7467  doi: 10.1021/acscatal.8b02121

    19. [19]

      Caparrós F J, Soler L, Rossell M D, Angurell I, Piccolo L, Rossell O, Llorca J. ChemCatChem, 2018, 10(11):2365-2369  doi: 10.1002/cctc.201800362

    20. [20]

      Sun X C, Lin J, Zhou Y L, Li L, Su Y, Wang X D, Zhang T. AlChE J., 2017, 63(9):4022-4031  doi: 10.1002/aic.15759

    21. [21]

      Pavlova S N, Savchenko V I, Sadykov V A, Zaikovskii V I, Kalinkin A V. React. Kinet. Catal. Lett., 1996, 59(1):103-110  doi: 10.1007/BF02067998

    22. [22]

      Bi Y S, Dang G Y, Zhao X H, Meng X F, Lu H J, Jin J T. J. Hazard. Mater., 2012, 229-230:245-250  doi: 10.1016/j.jhazmat.2012.05.086

    23. [23]

      Liu L Q, Zhou F, Wang L G, Qi X J, Shi F, Deng Y Q. J. Catal., 2010, 274(1):1-10

    24. [24]

      Hensley A J R, Hong Y C, Zhang R Q, Zhang H, Sun J M, Wang Y, McEwen J S. ACS Catal., 2014, 4(10):3381-3392  doi: 10.1021/cs500565e

    25. [25]

      Cheng Z, Qin L, Guo M, Fan J A, Xu D, Fan L S. Phys. Chem. Chem. Phys., 2016, 18(24):16423-16435  doi: 10.1039/C6CP01287F

    26. [26]

      Liang J X, Yu Q, Yang X F, Zhang T, Li J. Nano Res., 2018, 11(3):1599-1611

    27. [27]

      Fu Q, Li W X, Yao Y, Liu H, Su H Y, Ma D, Gu X K, Chen L, Wang Z, Zhang H, Wang B, Bao X. Science, 2010, 328(5982):1141-1144  doi: 10.1126/science.1188267

    28. [28]

      Sun Y N, Giordano L, Goniakowski J, Lewandowski M, Qin Z H, Noguera C, Shaikhutdinov S, Pacchioni G, Freund H J. Angew. Chem. Int. Ed., 2010, 49(26):4418-4421  doi: 10.1002/anie.201000437

    29. [29]

      Xie Y H, Li B, Weng W Z, Zheng Y P, Zhu K T, Zhang N W, Huang C J, Wan H L. Appl. Catal. A, 2015, 504:179-186  doi: 10.1016/j.apcata.2014.12.008

    30. [30]

      Yi H, Xia Y J, Yan H, Lu J L. Chin. J. Catal., 2017, 38(9):1581-1587  doi: 10.1016/S1872-2067(17)62768-2

    31. [31]

      Hong Y C, Zhang H, Sun J M, Ayman K M, Hensley A J R, Gu M, Engelhard M H, McEwen J S, Wang Y. ACS Catal., 2014, 4(10):3335-3345  doi: 10.1021/cs500578g

    32. [32]

      Sun W Z, Li Q, Gao S A, Shang J K. Appl. Catal. B, 2012, 125:1-9  doi: 10.1016/j.apcatb.2012.05.014

    33. [33]

      Jiang T, Du S C, Jafari T, Zhong W, Sun Y, Song W Q, Luo Z, Hines W A, Suib S L. Appl. Catal. A, 2015, 502:105-113  doi: 10.1016/j.apcata.2015.05.013

    34. [34]

      Wang F G, Xu Y, Zhao K F, He D N. Nano-micro Lett., 2014, 6(3):233-241

    35. [35]

      Yan B H, Wu Q Y, Cen J J, Timoshenko J, Frenkel A I, Su D, Chen X Y, Parise J B, Stach E, Orlov A, Chen J G. Appl. Catal. B, 2018, 237:1003-1011  doi: 10.1016/j.apcatb.2018.06.074

    36. [36]

      Porosoff M D, Yang X F, Boscoboinik J A, Chen J G. Angew. Chem. Int. Ed., 2014, 53(26):6705-6709  doi: 10.1002/anie.201404109

    37. [37]

      Brun M, Berthet A, Bertolini J C. J. Electron. Spectrosc. Relat. Phenom., 1999, 104(1/2/3):55-60

    38. [38]

      Tura J M, Regull P, Victori L S, de Castellar M D. Surf. Interface Anal., 1988, 11(8):447-449  doi: 10.1002/sia.740110807

    39. [39]

      Klikovits J, Napetschnig E, Schmid M, Seriani N, Dubay O, Kresse G, Varga P. Phys. Rev. B, 2007, 76(4):045405

    40. [40]

      Duan Z Y, Henkelman G. ACS Catal., 2014, 4(10):3435-3443

    41. [41]

      Toyoshima R, Yoshida M, Monya Y, Kousa Y, Suzuki K, Abe H, Mun B S, Mase K, Amemiya K, Kondoh H. J. Phys. Chem. C, 2012, 116(35):18691-18697  doi: 10.1021/jp301636u

    42. [42]

      Jung K D, Bell A T. J. Catal., 2000, 193(2):207-223

    43. [43]

      Yang B, Yu X, Halder A, Zhang X B, Zhou X, Mannie G J A, Tyo E, Pellin M J, Seifert S, Su D S, Vajda S. ACS Sustainable Chem. Eng., 2019, 7(17):14435-14442

    44. [44]

      Grosvenor A P, Kobe B A, Biesinger M C, McIntyre N S. Surf. Inter-face Anal., 2004, 36(12):1564-1574

    45. [45]

      Sun K, Wilson A R, Thompson S T, Lamb H H. ACS Catal., 2015, 5(3):1939-1948

    46. [46]

      Fan Q N, He S, Hao L, Liu X, Zhu Y, Xu S L, Zhang F Z. Sci. Rep., 2017, 7(1):42172

    47. [47]

      d'Alnoncourt R N, Friedrich M, Kunkes E, Rosenthal D, Girgsdies F, Zhang B S, Shao L D, Schuster M, Behrens M, Schlögl R. J. Catal., 2014, 317:220-228

    48. [48]

      Jacobs G, Davis B H. Appl. Catal. A, 2005, 284(1/2):31-38

    49. [49]

      Chen C S, Wu J H, Lai T W. J. Phys. Chem. C, 2010, 114(35):15021-15028

    50. [50]

      Park J N, Mcfarland E W. J. Catal., 2009, 266(1):92-97

  • 加载中
    1. [1]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    2. [2]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    3. [3]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    4. [4]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    5. [5]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    6. [6]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    7. [7]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    8. [8]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    9. [9]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    10. [10]

      Yuchen ZhangLifeng DingZhenghe XieXin ZhangXiaofeng SuiJian-Rong Li . Porous sorbents for direct capture of carbon dioxide from ambient air. Chinese Chemical Letters, 2025, 36(3): 109676-. doi: 10.1016/j.cclet.2024.109676

    11. [11]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    12. [12]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    13. [13]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    14. [14]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    15. [15]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    16. [16]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    17. [17]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    18. [18]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    19. [19]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    20. [20]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

Metrics
  • PDF Downloads(22)
  • Abstract views(2152)
  • HTML views(592)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return