Citation: YANG Xiao-Kun, CHEN A-Ling, YI Qing-Feng. Easy Preparation of N-Doped Graphene-like Nanosheets as Excellent Metal-Free Cathodic Electrocatalysts of Zn-Air Battery[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(1): 157-170. doi: 10.11862/CJIC.2021.001 shu

Easy Preparation of N-Doped Graphene-like Nanosheets as Excellent Metal-Free Cathodic Electrocatalysts of Zn-Air Battery

  • Corresponding author: YI Qing-Feng, yqfyy2001@hnust.edu.cn
  • Received Date: 19 July 2020
    Revised Date: 28 October 2020

Figures(8)

  • Carbon-based materials have been paid much attention due to their own good electroactivity and resources availability. Herein, we reported a simple and versatile synthesis strategy for the preparation of nitrogen-doped and metal-free carbon catalysts with excellent oxygen reduction reaction (ORR) electroactivity. Using dicyandiamide (DCD) as nitrogen source and sucrose, β-cyclodextrin and chitosan as different carbon sources, N-doped graphene-like nanosheet samples CN-nanosh(suc), CN-nanosh(cyc) and CN-nanosh(ch) were prepared by an easy pyrolysis of their mixture. The samples exhibited outstanding ORR electroactivity in alkaline media with a comparable performance to the benchmark Pt/C. Alkaline Zn-air battery with the prepared sample CN-nanosh(suc) as the cathodic catalyst displayed the maximum power density of 201.33 mW·cm-2, and its discharge time can last for more than 50 h at a constant current density of 100 mA·cm-2, which is close to the optimum values of the similar Zn-air battery with the metal-free cathodic electrocatalysts reported so far.
  • 加载中
    1. [1]

      Yuan W J, Li J H, Xie A J, Chen P, Li S K, Shen Y H. Electrochim. Acta, 2015, 165:29-35  doi: 10.1016/j.electacta.2015.02.242

    2. [2]

      Zhang J T, Zhao Z H, Xia Z H, Dai L M. Nat. Nanotechnol., 2015, 10(5):444-452

    3. [3]

      Zheng Y, Jiao Y, Chen J, Liu J, Liang L, Du A J, Zhang W M, Zhu Z H, Smith S C, Jaroniec M. J. Am. Chem. Soc., 2011, 133(50):20116-20119  doi: 10.1021/ja209206c

    4. [4]

      Zhan W C, Guo Y, Gong X Q, Guo Y L, Wang Y Q, Lu G Z. Chinese J. Catal., 2014, 35(8):1238-1250  doi: 10.1016/S1872-2067(14)60189-3

    5. [5]

      Chen Z, Higgins D, Chen Z G. Carbon, 2010, 48:3057-3065  doi: 10.1016/j.carbon.2010.04.038

    6. [6]

      Zhu H Y, Zhang S, Huang Y X, Wu L H, Sun S H. Nano Lett., 2013, 13(6):2947-2951  doi: 10.1021/nl401325u

    7. [7]

      Yi Q F, Zhang Y H, Liu X P, Xiang B L, Yang Y H. J. Mater. Sci., 2014, 49:729-736  doi: 10.1007/s10853-013-7754-2

    8. [8]

      Yi Q F, Zhang Y H, Liu X P, Yang Y H. Sci. China Chem., 2014, 57:739-747  doi: 10.1007/s11426-013-5027-1

    9. [9]

      Yu L, Yi Q F, Yang X K, Li G. Chemistry Select, 2018, 3:12603-12612

    10. [10]

      Wang Y C, Zhou T, Jiang K, Da P M, Zheng G F. Adv. Energy Mater., 2014, 4(16):1400696  doi: 10.1002/aenm.201400696

    11. [11]

      Fan X J, Peng Z W, Ye R Q, Zhou H Q, Guo X. ACS Nano, 2015, 9(7):7407-7418  doi: 10.1021/acsnano.5b02420

    12. [12]

      Ma T Y, Dai S, Jaroniec M, Qiao S Z. Angew. Chem., 2014, 126(28):7409-7413  doi: 10.1002/ange.201403946

    13. [13]

      Deng Z L, Yi Q F, Zhang Y Y, Nie H D. J. Electroanal. Chem., 2017, 803:95-103  doi: 10.1016/j.jelechem.2017.09.025

    14. [14]

      Gong K P, Du F, Xia Z H, Durstoch M, Dai L. Science, 2009, 323(5915):760-764  doi: 10.1126/science.1168049

    15. [15]

      Yu P P, Zhang Z M, Zheng L X, Teng F, Hu L F, Fang X S. Adv. Energy Mater., 2016, 6(20):1601111  doi: 10.1002/aenm.201601111

    16. [16]

      Lin Z Y, Song M K, Ding Y, Liu Y, Liu M L, Wong C P. Phy. Chem. Chem. Phy., 2012, 14(10):3381-3387  doi: 10.1039/c2cp00032f

    17. [17]

      Jin J T, Pan F P, Jiang L H, Fu X G, Sun G Q. ACS Nano, 2014, 8:3313-3321  doi: 10.1021/nn404927n

    18. [18]

      Preuss K, Kannuchamy V K, Marinovic A, Isaacs M, Wilson K, Abrahams I, Titirici M M. J. Energy Chem., 2016, 25:228-235  doi: 10.1016/j.jechem.2016.01.001

    19. [19]

      Wu H H, Wang J, Wang G X, Cai F, Ye Y F, Jiang Q K, Sun S C. Nano Energy, 2016, 30:801-809  doi: 10.1016/j.nanoen.2016.09.016

    20. [20]

      Zheng Y, Jiao Y, Li L H, Xing T, Chen Y, Jaroniec M, Qiao S Z. ACS Nano, 2014, 8:5290-5296  doi: 10.1021/nn501434a

    21. [21]

      Yang X K, Yi Q F, Sheng K, Wang T. Ionics, 2019, 25:4817-4830  doi: 10.1007/s11581-019-03022-4

    22. [22]

      Yu L, Yi Q F, Yang X K, Chen Y. Sci. China Mater., 2019, 62(9):1251-1264  doi: 10.1007/s40843-019-9439-9

    23. [23]

      Sheng K, Yi Q F, Hou L F, Chen A L. J. Electrochem. Soc., 2020, 167:070560  doi: 10.1149/1945-7111/ab8646

    24. [24]

      Wang Q C, Ji Y J, Lei Y P, Wang Y B, Wang Y D, Li Y Y, Wang S Y. ACS Energy Lett., 2018, 3(5):1183-1191  doi: 10.1021/acsenergylett.8b00303

    25. [25]

      Cao J Y, Hu Y, Chen L J, Xu J, Chen Z D. Int. J. Hydrogen Energy, 2017, 42(5):2931-2942  doi: 10.1016/j.ijhydene.2017.01.029

    26. [26]

      Zhang H M, Chen J Y, Li Y B, Liu P R, Wang Y, An T C, Zhao H J. Electrochim. Acta, 2015, 165:7-13  doi: 10.1016/j.electacta.2015.02.240

    27. [27]

      Chen D W, Zou Y Q, Wang S Y. Mater. Today Energy, 2019, 12:250-268  doi: 10.1016/j.mtener.2019.01.006

    28. [28]

      Shinde S S, Lee C H, Sami A, Kim D H, Lee S U, Lee J H. ACS Nano, 2017, 11(1):347-357  doi: 10.1021/acsnano.6b05914

    29. [29]

      Lai L F, Potts J R, Zhan D, Wang L, Poh C K, Tang C H, Gong H, Shen Z X, Lin J Y, Ruoff R S. Energy Environ. Sci., 2012, 5(7):7936-7942  doi: 10.1039/c2ee21802j

    30. [30]

      Meng Y, Gu D, Zhang F Q, Shi Y F, Zhao D Y. Angew. Chem. Int. Ed., 2005, 44(43):7053-7059  doi: 10.1002/anie.200501561

    31. [31]

      Deng Z L, Yi Q F, Li G, Chen Y, Yang X K, Nie H D. Electrochim. Acta, 2018, 279:1-9  doi: 10.1016/j.electacta.2018.05.069

    32. [32]

      Wei C T, Wang H J, Eid K, Kim J, Kim J H, Alothman Z A, Wang L. Chem.-Eur. J., 2016, 23:637-643

    33. [33]

      Yang J Q, Zhou X L, Wu D H, Zhao X D, Zhou Z. Adv. Mater., 2016, 29(6):1604108

    34. [34]

      Qie L, Chen W M, Xiong X Q, Hu C C, Zou F, Hu P, Huang Y H. Adv. Sci., 2015, 2(12):1500195

    35. [35]

      Tamilarasan P, Ramaprabhu S. J. Mater. Chem. A, 2015, 3(1):101-108

    36. [36]

      Xue H R, Wang T, Guo H, Fan X L. RSC Adv., 2014, 4(101):57724-57732  doi: 10.1039/C4RA09939G

    37. [37]

      Qu K, Zheng Y, Dai S, Qiao S Z. Nanoscale, 2015, 7(29):12598-12605  doi: 10.1039/C5NR03089G

    38. [38]

      Cong H P, Wang P, Gong M, Yu S H. Nano Energy, 2014, 3:55-63  doi: 10.1016/j.nanoen.2013.10.010

    39. [39]

      Ferrari A, Basko D M. Nat Nanotechnol., 2013, 8(4):235-246

    40. [40]

      Zhang N F, Zhou Y M, Yang X Y, Tang C L, Wu H, Zhong N S. RSC Adv., 2014, 4(34):17549-17554  doi: 10.1039/c3ra47853j

    41. [41]

      Yang C, Xu Y Y, Zhang C, Sun Z C, Chen C S, Li X H, Jiang S Z, Man B Y. Nanoscale Res. Lett., 2014, 9(1):394  doi: 10.1186/1556-276X-9-394

    42. [42]

      Yu H J, Shang L, Bian T, Shi R, Waterhouse G I N, Zhao Y F, Zhou C, Wu L Z, Tung C H, Zhang T R. Adv. Mater., 2016, 28(25):5140  doi: 10.1002/adma.201670178

    43. [43]

      Gupta S, Qiao L, Zhao S, Xu H, Lin Y, Devaguptapu S V, Wang X L, Swihart M T, Wu G. Adv. Energy Mater., 2016, 6(22):1601198  doi: 10.1002/aenm.201601198

    44. [44]

      Wang M, Yang Z Z, Wang J Q, Li H, Gu L, Yu Y. Small, 2015, 11(40):5330  doi: 10.1002/smll.201570245

    45. [45]

      Raccichini R, Varzi A, Passerini S, Scrosati B. Nat. Mater., 2014, 14(3):271-279

    46. [46]

      Ning R, Ge C J, Liu Q, Tian J Q, Asiri A M, Alamry K A, Li C M, Sun X P. Carbon, 2014, 78:60-69  doi: 10.1016/j.carbon.2014.06.048

    47. [47]

      Li J C, Zhao S Y, Hou P X, Fang R P, Liu C, Liang J, Cheng H M. Nanoscale, 2015, 7(45):19201-19206  doi: 10.1039/C5NR05998D

    48. [48]

      Wasalathilake K C, Galpaya D G, Ayoko G A, Yan C. Carbon, 2018, 137:282-290  doi: 10.1016/j.carbon.2018.05.036

    49. [49]

      Dettlaff A, Sawczak M, Klugmann-Radziemska E, Czylkowski D, Miotk R, Wilamowska-Zawłocka M. RSC Adv., 2017, 7(51):31940-31949  doi: 10.1039/C7RA04707J

    50. [50]

      Liu G, Li X G, Ganesan P, Popov B N. Electrochim. Acta, 2010, 55(8):2853-2858  doi: 10.1016/j.electacta.2009.12.055

    51. [51]

      Rao C V, Cabrera C R, Ishikawa Y. J. Phys. Chem. Lett., 2010, 1(18):2622-2627  doi: 10.1021/jz100971v

    52. [52]

      Tang C, Wang B, Wang H F, Zhang Q. Adv. Mater., 2017, 29(37):1703185  doi: 10.1002/adma.201703185

    53. [53]

      Wan K, Long G F, Liu, M Y, Du L, Liang Z X, Tsiakaras P. Appl. Catal. B, 2015, 165:566-571  doi: 10.1016/j.apcatb.2014.10.054

    54. [54]

      Choi C H, Park S H, Woo S I. Green Chem., 2011, 13(2):406-412

    55. [55]

      Sahraie N R, Paraknowitsch J P, Göbel C, Thomas A, Strasser P. J. Am. Chem. Soc., 2014, 136(41):14486-14497

    56. [56]

      Zhu C Z, Li H, Fu S F, Du D, Lin Y H. Chem. Soc. Rev., 2016, 45:517-531

    57. [57]

      Ai K, Liu Y L, Ruan C P, Lu L H, Lu G M. Adv. Mater., 2013, 25(7):998-1003

    58. [58]

      Yang Z, Yao Z, Li G F, Fang J Y, Nie H G, Liu Z, Zhou X M, Chen X A, Huang S M. ACS Nano, 2012, 6(1):205-211

    59. [59]

      Chen Z, Yu A P, Higgins D, Li H, Wang H J, Chen Z W. Nano Lett., 2012, 12:1946-1952

    60. [60]

      Fu G T, Cui Z M, Chen Y F, Li Y T, Tang Y W, Goodenough J B. Adv. Energy Mater., 2016, 7:1601172

    61. [61]

      Liu L Z, Zeng G, Chen J X, Bi L L, Dai L M, Wen Z H. Nano Energy, 2018, 49:393-406

    62. [62]

      Xu N N, Zhang Y X, Zhang T, Liu Y Y, Qiao J L. Nano Energy, 2019, 57:176-185

    63. [63]

      Li C L, Wu M C, Liu R. Appl. Catal. B, 2019, 244:150-158

    64. [64]

      Wan W J, Liu X J, Li H Y, Peng X Y, Xi D S, Luo J. Appl. Catal. B, 2019, 240:193-200

    65. [65]

      Pei Z X, Hong F, Huang Y, Xue Q Z, Yang C Y, Zhu M S, Wang Z F. Energy Environ. Sci., 2017, 10(3):742-749

    66. [66]

      Wang Q C, Ji Y J, Lei Y P, Wang Y B, Wang Y D, Li Y Y, Wang S Y. ACS Energy Lett., 2018, 3(5):1183-1191

    67. [67]

      Shinde S S, Lee C H, Jung J Y, Wagh N K, Kim S H, Kim D H, Lin C, Lee S U, Lee J H. Energy Environ. Sci., 2019, DOI:10.1039/c8ee02679c  doi: 10.1039/c8ee02679c

    68. [68]

      Tang Z J, Pei Z X, Wang Z F, Li H F, Zeng J, Ruan Z H, Huang Y, Zhu M S, Xue Q, Yu J, Zhi C Y. Carbon, 2018, 130:532-543

    69. [69]

      Shinde S S, Lee C H, Yu J Y, Kim D H, Lee S U, Lee L H. ACS Nano, 2018, 12(1):596-608

    70. [70]

      Tang C, Wang B, Wang H F, Zhang Q. Adv. Mater., 2017, 29(37):1703185

    71. [71]

      Li Y M, Yan Z, Wang Q D, Ye H T, Li M L, Zhu L W, Cao X B. Electrochim. Acta, 2018, 282:224-232

    72. [72]

      Shinde S, Yu J Y, Song J W, Nam Y H, Kim D H, Lee D H. Nanoscale Horiz., 2017, 2(6):333-341

  • 加载中
    1. [1]

      Juhong Zhou Hui Zhao Ping Han Ziyue Wang Yan Zhang Xiaoxia Mao Konglin Wu Shengjue Deng Wenxiang He Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470

    2. [2]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    3. [3]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    8. [8]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    11. [11]

      Xiao-Fang LvXiao-Yun RanYu ZhaoRui-Rui ZhangLi-Na ZhangJing ShiJi-Xuan XuQing-Quan KongXiao-Qi YuKun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027

    12. [12]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    13. [13]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    14. [14]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    15. [15]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    16. [16]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    17. [17]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    18. [18]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    19. [19]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    20. [20]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

Metrics
  • PDF Downloads(4)
  • Abstract views(1236)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return