Disulfide-Bridged Dimeric Cobalt Porphyrin: Synthesis and Electroreduction of Dioxygen
- Corresponding author: XUE Song-Lin, ricardoxue@163.com PENG Yang, ypeng@suda.edu.cn
Citation:
JIN Hui-Dong, GU Yin-Dong, LIAN Yue-Bin, XUE Song-Lin, FANG Yuan-Yuan, DENG Zhao, Sakamoto Masanori, Teranishi Toshiharu, PENG Yang. Disulfide-Bridged Dimeric Cobalt Porphyrin: Synthesis and Electroreduction of Dioxygen[J]. Chinese Journal of Inorganic Chemistry,
;2020, 36(12): 2377-2384.
doi:
10.11862/CJIC.2020.237
(a) Dai L M, Xue Y H, Qu L T, et al. Chem. Rev., 2015, 115: 4823-4892
(b)Maiyalagan T, Jarvis K, Therese S, et al. Nat. Commun., 2014, 5: 3949-3957
(c)Liang Y Y, Li Y G, Wang H L, et al. Nat. Mater., 2011, 10: 780-786
(d)Shao M H, Chang Q W, Dodelet J, et al. Chem. Rev., 2016, 116: 3594-3657
(e)Zhang J T, Zhao Z H, Xia Z H, et al. Nat. Nanotechnol., 2015, 10: 444-452
(a) Hijazi I, Bourgeteau T, Cornut R, et al. J. Am. Chem. Soc., 2014, 136: 6348-6354
(b)Sun S R, Jiang N, Xia D G, et al. J. Phys. Chem. C, 2011, 115: 9511-9517
(c)Morozan A, Campidelli S, Filoramo A, et al. Carbon, 2011, 49: 4839-4847
(d)Tang H J, Yin H J, Wang J Y, et al. Angew. Chem. Int. Ed., 2013, 52: 5585-5589
(a) Kim K, Collman J, Ibers J. et al. J. Am. Chem. Soc., 1988, 110: 4242-4246
(b)Le Mest Y, L'Her M, Hendricks N, et al. Inorg. Chem., 1992, 31: 835-846
(c)Collman J, Bencosme C, Anson F. et al. J. Am. Chem. Soc., 1983, 105: 2699-2703
Eguchi D, Sakamoto M, Tanaka D, et al. J. Phys. Chem. C, 2017, 121:10760-10766
doi: 10.1021/acs.jpcc.6b10972
Xue S L, Kuzuhara D, Aratani N, et al. Org. Lett., 2019, 21:2069-2072
doi: 10.1021/acs.orglett.9b00329
(a) Telser J. J. Braz. Chem. Soc., 2006, 17: 1501-1515
(b)Cambre S, Wenseleers W, Culin J, et al. ChemPhysChem, 2008, 9: 1930-1941
(c)Liu Q H, Zhang X, Zeng W N, et al. J. Phys. Chem. B, 2015, 119: 14102-14110
(a) Ye L N, Fang Y Y, Ou Z P, et al. Inorg. Chem., 2017, 56: 13613-13626
(b)Kadish K M, Van Caemelbecke E, Royal G. Handbook of Porphyrin Science. Kadish K M, Smith K M, Guilard R. Ed., San Diego: Academic Press, 2000: 1-114
Naoda K, Mori H, Aratani H, et al. Angew. Chem. Int. Ed., 2012, 51:9856-9859
doi: 10.1002/anie.201204446
(a) Lian Y B, Yang W J, Zhang C F, et al. Angew. Chem. Int. Ed., 2020, 59: 286-294
(b)Sun Y Y, Silvioli L, Sahraie N, et al. J. Am. Chem. Soc., 2019, 141: 12372-12381
Zhang W, Lai W Z, Cao R, et al. Chem. Rev., 2017, 117:3717-3797
doi: 10.1021/acs.chemrev.6b00299
(a) Sun L, Campbell M, Dincã M, et al. Angew. Chem. Int. Ed., 2016, 55: 3566-3579
(b)Zhu W, Zhang C F, Li Q, et al. Appl. Catal. B, 2018, 238: 339-345
Yu-Yao Li , Xiao-Hui Li , Zhi-Xuan An , Yang Chu , Xiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716
Ling Fang , Sha Wang , Shun Lu , Fengjun Yin , Yujie Dai , Lin Chang , Hong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
Bin Chen , Chaoyang Zheng , Dehuan Shi , Yi Huang , Renxia Deng , Yang Wei , Zheyuan Liu , Yan Yu , Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468
Chang LIU , Chao ZHANG , Tongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305
Longsheng Zhan , Yuchao Wang , Mengjie Liu , Xin Zhao , Danni Deng , Xinran Zheng , Jiabi Jiang , Xiang Xiong , Yongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695
Xingxing Jiang , Yuxin Zhao , Yan Kong , Jianju Sun , Shangzhao Feng , Xin Lu , Qi Hu , Hengpan Yang , Chuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Xingqun Pu , Rongrong Liu , Yuting Xie , Chenjing Yang , Jingyi Chen , Baoling Guo , Chun-Xia Zhao , Peng Zhao , Jian Ruan , Fangfu Ye , David A Weitz , Dong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Cheng-Shuang Wang , Bing-Yu Zhou , Yi-Feng Wang , Cheng Yuan , Bo-Han Kou , Wei-Wei Zhao , Jing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080
Six aryl groups of meso-positions were replaced with hydrogen at-oms to reduce computational costs; Hydrogen atoms are omitted for clarity
Supporting electrolyte: 0.1 mol·L-1 TBAP, scan rate: 0.1 V·s-1
Scan rate: 50 mV·s-1
Scan rate: 10 mV·s-1
Potential of disk electrode was from 0.8 to 0 V (vs RHE); Potential of ring electrode was held at 1.2 V (vs RHE); Rotation rate was 1 600 r·min-1, and the scan rate was 10 mV·s-1
Potential range was from 0.2 to 0.6 V (vs RHE)