Citation: TIAN Hai, ZHONG Yan-Jun, WU Zhen-Guo, KONG Xing-Jian, YANG Xiu-Shan, GUO Xiao-Dong, WANG Xin-Long, ZHONG Ben-He. Synthesis and Lithium Storage Properties of Hollow Hierarchical Structure Fe3O4@C/rGO Composites[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(7): 1309-1317. doi: 10.11862/CJIC.2020.151 shu

Synthesis and Lithium Storage Properties of Hollow Hierarchical Structure Fe3O4@C/rGO Composites

  • Corresponding author: KONG Xing-Jian, kongxingjian@scu.edu.cn
  • Received Date: 6 February 2020
    Revised Date: 9 April 2020

Figures(7)

  • The Fe3O4@C/rGO composite was synthesized using graphene oxide (GO) as the substrate, Fe(NO3)3·9H2O, isopropanol and glycerol as the raw materials by solvothermal method and subsequent heat treatment process, and it succeeded in realizing the in-situ growth of carbon-coated hierarchical Fe3O4 hollow spheres on graphene oxide sheets. The physicochemical properties and lithium storage properties of Fe3O4@C/rGO materials were analyzed by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic discharge-charge, etc. The results showed that the composite still has the reversible capacity of 437.7 mAh·g-1 under the current density of 5.0 A·g-1, and the discharge specific capacity of 587.3 mAh·g-1 after 200 cycles at 1.0 A·g-1. This is mainly attributed to the introduction of reduced graphene oxide (rGO) which improves the overall structural stability and electrical conductivity of carbon-coated Fe3O4 hierarchical hollow spheres.
  • 加载中
    1. [1]

      Li M, Lu J, Chen Z, et al. Adv. Mater., 2018, 30:1800561-1800585

    2. [2]

      Weng W S, Lin J, Du Y C, et al. J. Mater. Chem. A, 2018, 6(22):10168-10175

    3. [3]

      Kim T, Song W T, Son D Y, et al. J. Mater. Chem. A, 2019, 7(7):2942-2964

    4. [4]

      Yu S J, Hong Ng V M, Wang F, et al. J. Mater. Chem. A, 2018, 6(20):9332-9367

    5. [5]

      BAI Yu-Lin, WANG Cheng, WU Yue, et al. Chinese J. Inorg. Chem., 2019, 35(11):2045-2050
       

    6. [6]

      Yan Z J, Jiang X B, Dai Y, et al. ACS Appl. Mater. Interfaces, 2018, 10(3):2581-2590

    7. [7]

      Huang Y, Xu Z H, Mai J Q, et al. Nano Energy, 2017, 41:426-433

    8. [8]

      Xin Q A, Gai L G, Wang Y, et al. J. Alloys Compd., 2017, 691:592-599

    9. [9]

      Wang Y, Jin Y H, Zhao C C, et al. Appl. Surf. Sci., 2018, 458:1035-1042

    10. [10]

      Wang B, Wu H B, Zhang L, et al. Angew. Chem. Int. Ed., 2013, 52(15):4165-4168
       

    11. [11]

      Geng H B, Zhou Q, Pan Y, et al. Nanoscale, 2014, 6(7):3889-3894
       

    12. [12]

      Ganganboina A B, Chowdhury A D, Doong R A. Electrochim. Acta, 2017, 245:912-923

    13. [13]

      Du L Y, Xu C X, Liu J J, et al. Nanoscale, 2017, 9(38):1437614384

    14. [14]

      Ma F X, Hu H, Wu H B, et al. Adv. Mater., 2015, 27(27):4097-4101
       

    15. [15]

      Wan L J, Yan D, Xu X T, et al. J. Mater. Chem. A, 2018, 6(48):24940-24948

    16. [16]

      Dong Y F, Liu S H, Liu Y, et al. J. Mater. Chem. A, 2016, 4(45):17718-17725

    17. [17]

      Yang D F, Xu B H, Zhao Q L, et al. J. Mater. Chem. A, 2019, 7(1):363-371

    18. [18]

      ZHU Shou-Pu, WU Tian, SU Hai-Ming, et al. Acta Phys.-Chim. Sin., 2016, 32(11):2737-2744
       

    19. [19]

      Ding R R, Zhang J, Qi J, et al. ACS Appl. Mater. Interfaces, 2018, 10(16):13470-13478

    20. [20]

      LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong, et al. Acta Phys.-Chim. Sin., 2016, 32(2):573-580
       

    21. [21]

      TIAN Ai-Hua, WEI Wei, QU Peng, et al. Acta Phys.-Chim. Sin., 2017, 33(8):1621-1627
       

    22. [22]

      Ma Y T, Huang J, Lin L, et al. J. Power Sources, 2017, 365:98-108

    23. [23]

      Ma Y T, Huang J, Liu X, et al. Chem. Eng. J., 2017, 327:678-685
       

    24. [24]

      Zhao Q S, Liu J L, Wang Y X, et al. Electrochim. Acta, 2018, 262:233-240
       

    25. [25]

      ZHANG Xing-Shuai, XU Xiao-Mu, GUO Yu-Zhong, et al. Chinese J. Inorg. Chem., 2017, 33(3):377-382
       

    26. [26]

      Pei S F, Cheng H M. Carbon, 2012, 50(9):3210-3228
       

    27. [27]

      Qi H, Cao L Y, Li J Y, et al. J. Alloys Compd., 2019, 804:57-64

    28. [28]

      Park G D, Hong J H, Jung D S, et al. J. Mater. Chem. A, 2019, 7(26):15766-15773

    29. [29]

      Su Y B, Wang F X, Zhang J, et al. J. Mater. Chem. A, 2019, 7(36):20899-20904

    30. [30]

      LIU Jian-Hua, LIU Bin-Hong, LI ZhouPeng, et al. Acta Phys.-Chim. Sin., 2014, 30(9):1650-1658
       

    31. [31]

      Chen S, Wu Q, Wen M, et al. ACS Appl. Mater. Interfaces, 2018, 10(23):19656-19663

    32. [32]

      Fan X L, Shao J, Xiao X Z, et al. J. Mater. Chem. A, 2014, 2(35):14641-14648
       

    33. [33]

      Yun S, Bak S M, Kim S, et al. Adv. Energy Mater., 2018, 9(6):1802816-1802825

    34. [34]

      ZHENG Hao, JIN Jia-Xing, CHENG JingSong, et al. Chinese J. Inorg. Chem., 2020, 36(1):62-68
       

    35. [35]

      He Z S, Wang K, Zhu S S, et al. ACS Appl. Mater. Interfaces, 2018, 10(13):10974-10985

    36. [36]

      Hou B H, Wang Y Y, Guo J Z, et al. ACS Appl. Mater. Interfaces, 2018, 10(4):3581-3589

    37. [37]

      Jiang F Y, Yan X S, Du R, et al. Nanomaterials, 2019, 9(7):996-1017

    38. [38]

      Tan H, Huang K, Bao Y X, et al. J. Alloys Compd., 2017, 699:812-817

    39. [39]

      Pan Q C, Zheng F H, Ou X, et al. ACS Sustainable Chem. Eng., 2017, 5(6):4739-4745

    40. [40]

      Wang N, Liu Q L, Li Y, et al. RSC Adv., 2017, 7(79):50307-50316

    41. [41]

      Wang Y S, Li Y Y, Qiu Z P, et al. J. Mater. Chem. A, 2018, 6(24):11189-11197
       

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    8. [8]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    9. [9]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    12. [12]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    15. [15]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    16. [16]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    17. [17]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    18. [18]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    19. [19]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(6)
  • Abstract views(928)
  • HTML views(282)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return