Fullerene-Based Materials in Photocatalysis and Electrochemical Catalysis: Fundamentals and Applications
- Corresponding author: WEI Xian-Wen, xwwei@mail.ahnu.edu.cn; xwwei@ahut.edu.cn
Citation:
CHENG Yuan-Sheng, CAI Hao-Dong, LING Min, SONG Chao, WEI Xian-Wen. Fullerene-Based Materials in Photocatalysis and Electrochemical Catalysis: Fundamentals and Applications[J]. Chinese Journal of Inorganic Chemistry,
;2020, 36(6): 1014-1034.
doi:
10.11862/CJIC.2020.134
Stamenkovic V R, Strmcnik D, Lopes P P, et al. Nat. Mater., 2016, 16(1):57-69
Montoya J H, Seitz L C, Chakthranont P, et al. Nat. Mater., 2016, 16(1):70-81
Seh Z W, Kibsgaard J, Dickens C F, et al. Science, 2017, 355 (6321):eaad4998
doi: 10.1126/science.aad4998
Wang J, Xu F, Jin H Y, et al. Adv. Mater., 2017, 29(14): 1605838
doi: 10.1002/adma.201605838
Zhai Y L, Zhu Z J, Dong S J. ChemCatChem, 2015, 7(18): 2806-2815
doi: 10.1002/cctc.201500323
Prato M. J. Mater. Chem., 1997, 7(7):1097-1109
doi: 10.1039/a700080d
Reed C A, Bolskar R D. Chem. Rev., 2000, 100(3):1075-1120
doi: 10.1021/cr980017o
Kroto H W, Heath J R, OBrien S C, et al. Nature, 1985, 318 (6042):162-163
doi: 10.1038/318162a0
Kroto H W, Allaf A W, Balm S P. Chem. Rev., 1991, 91(6): 1213-1235
doi: 10.1021/cr00006a005
Liu J S, Zhu Y L, Yu C M, et al. Can. J. Chem., 1986, 64(4): 837-839
doi: 10.1139/v86-137
Wei X W, Wu M F, Qi L, et al. J. Chem. Soc., Perkin Trans. 2, 1997, 2(7):1389-1394
Pan Y, Liu X J, Zhang W, et al. Appl. Catal. B, 2020, 265: 118579
doi: 10.1016/j.apcatb.2019.118579
Noviandri I, Bolskar R D, Lay P A, et al. J. Phys. Chem. B, 1997, 101(33):6350-6358
doi: 10.1021/jp9707403
Lebedeva M A, Chamberlain T W, Khlobystov A N. Chem. Rev., 2015, 115(20):11301-11351
doi: 10.1021/acs.chemrev.5b00005
Isaacs L, Haldimann R F, Diederich F. Angew. Chem. Int. Ed., 1994, 33(22):2339-2342
doi: 10.1002/anie.199423391
Dunlap B I, Brenner D W. J. Phys. Chem., 1994, 98(7):1756 -1757
doi: 10.1021/j100058a006
Creegan K M, Robbins J L, Robbins W K, et al. J. Am. Chem. Soc., 1992, 114(3):1103-1105
doi: 10.1021/ja00029a058
XIE Jin-Song, WEI Xian-Wen. Prog. Chem., 2007, 199(2):313-322
doi: 10.3321/j.issn:1005-281X.2007.02.015
LI Xiang-Zi, YU Rui, WEI Xian-Wen. Prog. Chem., 2011, 23(6):1148-1164
Giacalone F, Martín N. Chem. Rev., 2006, 106(12):5136-5190
doi: 10.1021/cr068389h
Wei X W, Darwish A D, Boltalina O V, et al. Angew. Chem. Int. Ed., 2001, 40(16):2989-2992
doi: 10.1002/1521-3773(20010817)40:16<2989::AID-ANIE2989>3.0.CO;2-0
Chang W W, Li Z J, Yang W W, et al. Org. Lett., 2012, 14 (9):2386-2389
doi: 10.1021/ol300805p
Wang J J, Lin H S, Niu C, et al. Org. Biomol. Chem., 2017, 15 (15):3248-3254
doi: 10.1039/C7OB00463J
Wei T, Hauke F, Andreas H. Acc. Chem. Res., 2019, 52(8): 2037-2045
doi: 10.1021/acs.accounts.9b00181
Chen X, Chen H L, Guan J, et al. Nanoscale, 2017, 9(17): 5615-5623
doi: 10.1039/C7NR01237C
Zhu X J, Zhang T M, Jiang D C, et al. Nat. Commun., 2018, 9(1):4177
doi: 10.1038/s41467-018-06437-1
Zhang L W, Wang Y J, Xu T G, et al. J. Mol. Catal. A: Chem., 2010, 331(1):7-14
Fu H B, Xu T G, Zhu S B, et al. Environ. Sci. Technol., 2008, 42(21):8064-8069
doi: 10.1021/es801484x
Grandcolas M, Ye J, Miyazawa K. Ceram. Int., 2014, 40(1): 1297-1302
doi: 10.1016/j.ceramint.2013.07.009
Zhang F F, Chen Y J, Zhou W, et al. ACS Appl. Mater. Interfaces, 2019, 11(9):9093-9101
doi: 10.1021/acsami.8b21222
Meng Z D, Zhu L, Ullah K, et al. Mater. Res. Bull., 2014, 56: 45-53
doi: 10.1016/j.materresbull.2014.04.033
Zeda M, Wonchun O. Chin. J. Catal., 2012, 33(9):1495-1501
Long Y Z, Lu Y, Huang Y, et al. J. Phys. Chem. C, 2009, 113 (31):13899-13905
doi: 10.1021/jp902417j
Li G S, Jiang B, Li X, et al. ACS Appl. Mater. Interfaces, 2013, 5(15):7190-7197
doi: 10.1021/am401525m
Lin X, Zhao R, Xi Y, et al. R. Soc. Open Sci., 2018, 5(5): 172290
doi: 10.1098/rsos.172290
Zheng D Y, Zhou X M, Mutyala S, et al. Chem. Eur. J., 2018, 24(72):19141-19145
doi: 10.1002/chem.201803900
Guan J, Chen X, Wei T, et al. J. Mater. Chem. A, 2015, 3 (8):4139-4146
doi: 10.1039/C4TA05456C
Wang B, Wang M Y, Liu F Y, et al. Angew. Chem. Int. Ed., 2020, 59(5):1914-1918
doi: 10.1002/anie.201913095
Chen G X, Zhuo Z W, Ni K, et al. Small, 2015, 11(39):5296- 5304
doi: 10.1002/smll.201501611
Lu J, Yeo P S E, Gan C K, et al. Nat. Nanotechnol., 2011, 6 (4):247-252
doi: 10.1038/nnano.2011.30
Tan Z Q, Ni K, Chen G X, et al. Adv. Mater., 2017, 29(8): 1603414
doi: 10.1002/adma.201603414
Zhu J W, Huang Y P, Mei W C, et al. Angew. Chem. Int. Ed., 2019, 58(12):3859-3864
doi: 10.1002/anie.201813805
Adam W, Kazakov D V, Kazakov V P. Chem. Rev., 2005, 105 (9):3371-3387
doi: 10.1021/cr0300035
Ghogare A A, Greer A. Chem. Rev., 2016, 116(17):9994- 10034
doi: 10.1021/acs.chemrev.5b00726
Arbogast J W, Darmanyan A P, Foote D C, et al. J. Phys. Chem., 1991, 95(1):11-12
Kamat P V, Haria M, Hotchandani S. J. Phys. Chem. B, 2004, 108(17):5166-5170
doi: 10.1021/jp0496699
Yamakoshi Y, Umezawa N, Ryu T, et al. J. Am. Chem. Soc., 2003, 125(42):12803-12809
doi: 10.1021/ja0355574
Mourad E, Petit Y K, Spezia R, et al. Energy Environ. Sci., 2019, 12(8):2559-2568
doi: 10.1039/C9EE01453E
Nagl S, Baleizo C, Borisov S M, et al. Angew. Chem. Int. Ed., 2007, 46(13):2317-2319
doi: 10.1002/anie.200603754
Tokuyama H, Nakamura E. J. Org. Chem., 1994, 59(5):1135- 1138
doi: 10.1021/jo00084a036
Kumar R, Gleiner E H, Tiu E G V, et al. Org. Lett., 2016, 18 (2):184-187
doi: 10.1021/acs.orglett.5b03194
Kumar I, Sharma R, Kumar R, et al. Adv. Synth. Catal., 2018, 360(10):2013-2019
doi: 10.1002/adsc.201701573
Malikova R N, Sakhautdinov I M, Ishbaeva S M, et al. Russ. J. Gen. Chem., 2017, 87(10):2497-2499
doi: 10.1134/S1070363217100371
Jensen A W, Daniels C. J. Org. Chem., 2003, 68(2):207-210
doi: 10.1021/jo025926z
Latassa D, Enger O, Thilgen C, et al. J. Mater. Chem., 2002, 12(7):1993-1995
doi: 10.1039/b201141g
Anderson J L, An Y Z, Rubin Y, et al. J. Am. Chem. Soc., 1994, 116(21):9763-9764
doi: 10.1021/ja00100a057
Prat F, Stackow R, Bernstein R, et al. J. Phys. Chem. A, 1999, 103(36):7230-7235
doi: 10.1021/jp991237o
Martínez-Agramunt V, Peris E. Inorg. Chem., 2019, 58(17): 11836-11842
doi: 10.1021/acs.inorgchem.9b02097
Yoshida Z, Takekuma H, Takekuma S, et al. Angew. Chem. Int. Ed., 1994, 33(15/16):1597-1599
Lee J, Fortner J D, Hughes J B, et al. Environ. Sci. Technol., 2007, 41(7):2529-2535
doi: 10.1021/es062066l
Oriana S, Aroua S, Sollner J O B, et al. Chem. Commun., 2013, 49(81):9302-9304
doi: 10.1039/c3cc45501g
Fortner J D, Lyon D Y, Sayes C M, et al. Environ. Sci. Technol., 2005, 39(11):4307-4316
doi: 10.1021/es048099n
Hotze E M, Labille J, Alvarez P, et al. Environ. Sci. Technol., 2008, 42(11):4175-4180
doi: 10.1021/es702172w
Moor K J, Kim J H. Environ. Sci. Technol., 2014, 48(5):2785 -2791
doi: 10.1021/es405283w
Moor K J, Valle D C, Li C H, et al. Environ. Sci. Technol., 2015, 49(10):6190-6197
doi: 10.1021/es505888d
Choi Y, Ye Y J, Mackeyev Y, et al. Carbon, 2014, 69:92-100
doi: 10.1016/j.carbon.2013.11.065
Blacha-Grzechnik A, Krzywiecki M, Motyka R, et al. J. Phys. Chem. C, 2019, 123(42):25915-25924
doi: 10.1021/acs.jpcc.9b06101
Huang L, Yu X R, Wu W H, et al. Org. Lett., 2012, 14(10): 2594-2597
doi: 10.1021/ol3008843
Kuciauskas D, Lin S, Seely G R, et al. J. Phys. Chem., 1996, 100(39):15926-15932
doi: 10.1021/jp9612745
Chen Y, EI-Khouly M E, Sasaki M, et al. Org. Lett., 2005, 7 (8):1613-1616
doi: 10.1021/ol050281l
Liu Y F, Zhao J Z. Chem. Commun., 2012, 48(31):3751-3753
doi: 10.1039/c2cc30345k
Dong C, Wang J, Wu K L, et al. CrystEngComm, 2016, 18 (9):1618-1624
doi: 10.1039/C6CE00010J
Meng Z D, Zhu L, Choi J G, et al. J. Mater. Chem., 2011, 21 (21):7596-7603
doi: 10.1039/c1jm10301f
Djordjevic A, Merkulov D, Lazarevi M, et al. Chemosphere, 2018, 196:145-152
doi: 10.1016/j.chemosphere.2017.12.160
Chen Y, Xie X Q, Xin X, et al. ACS Nano, 2019, 13(1):295- 304
doi: 10.1021/acsnano.8b06136
Wang S, Li L P, Zhu Z H, et al. Small, 2019, 15(29):1804515
doi: 10.1002/smll.201804515
Kamat P V, Bedja I, Hotchandani S. J. Phys. Chem., 1994, 98(37):9137-9142
doi: 10.1021/j100088a008
Kamat P V. J. Am. Chem. Soc., 1991, 113(25):9705-9707
doi: 10.1021/ja00025a064
Cai Q, Hu Z F, Zhang Q, et al. Appl. Surf. Sci., 2017, 403: 151-158
doi: 10.1016/j.apsusc.2017.01.135
Meng Z D, Zhu L, Oh W C. J. Ind. Eng. Chem., 2012, 18(6): 2004-2009
doi: 10.1016/j.jiec.2012.05.019
Xu T Y, Zhu R L, Zhu J X, et al. RSC Adv., 2016, 6(89): 85962-85969
doi: 10.1039/C6RA18657B
Sepahvand S, Farhadi S. RSC Adv., 2018, 8(18):10124-10140
doi: 10.1039/C8RA00069G
Liu S L, Jiang C R, Gao Y P, et al. Mater. Res. Bull., 2020, 122:110668
doi: 10.1016/j.materresbull.2019.110668
Bai X J, Wang L, Wang Y J, et al. Appl. Catal. B, 2014, 152- 153:262-270
doi: 10.1016/j.apcatb.2014.01.046
Behera A, Mansingh S, Das K K, et al. J. Colloid Interf. Sci., 2019, 544:96-111
doi: 10.1016/j.jcis.2019.02.056
Ma D M, Zhong J B, Peng R F, et al. Appl. Surf. Sci., 2019, 465:249-258
doi: 10.1016/j.apsusc.2018.09.192
Zhu S B, Xu T G, Fu H B, et al. Environ. Sci. Technol., 2007, 41(17):6234-6239
doi: 10.1021/es070953y
Zhao X, Liu H J, Shen Y L, et al. Appl. Catal. B, 2011, 106 (1):63-68
Ju L T, Wu P X, Yang Q L, et al. Appl. Catal. B, 2018, 224: 159-174
doi: 10.1016/j.apcatb.2017.10.056
Wang J B, Liu C, Yang S, et al. J. Phys. Chem. Solids, 2020, 136:109164
doi: 10.1016/j.jpcs.2019.109164
Kamat P V, Gevaert M. J. Phys. Chem. B, 1997, 101(22): 4422-4427
doi: 10.1021/jp970047f
Ding S S, Huang W Q, Zhou B X, et al. Curr. Appl. Phys., 2017, 17(11):1547-1556
doi: 10.1016/j.cap.2017.07.008
Zhang X, Wang Q, Zou L H, et al. J. Colloid Interface Sci., 2016, 466:56-61
doi: 10.1016/j.jcis.2015.12.013
Liu C B, Cong Y, Sun H Y, et al. CrystEngComm, 2014, 16 (24):5275-5279
doi: 10.1039/C4CE00092G
Lim J, Kim H, Alvarez P J J, et al. Environ. Sci. Technol., 2016, 50(19):10545-10553
doi: 10.1021/acs.est.6b03250
Park Y, Singh N J, Kim K S, et al. Chem. Eur. J., 2009, 15 (41):10843-10850
doi: 10.1002/chem.200901704
Rajh T, Chen L X, Lukas K. J. Phys. Chem. B, 2002, 106 (41):10543-10552
doi: 10.1021/jp021235v
Long R, Dai Y, Huang B B. J. Phys. Chem. Lett., 2013, 4 (13):2223-2229
doi: 10.1021/jz401124w
Qi K Z, Selvaraj R, Fahdi T A, et al. Appl. Surf. Sci., 2016, 387:750-758
doi: 10.1016/j.apsusc.2016.06.134
Wei Y X, Ma M G, Li W L, et al. Appl. Catal. B, 2018, 238: 63-68
Li B J, Xu Z. J. Am. Chem. Soc., 2009, 131(45):16380- 16382
doi: 10.1021/ja9061097
Guo Y, Li W G, Yan J J, et al. Chem. Asian J., 2012, 7 (12):2842-2847
doi: 10.1002/asia.201200701
Nishibayashi Y, Saito M, Uemura S, et al. Nature, 2004, 428(6980):279-280
MEI Qiu-Feng, ZHANG Fei-Yan, WANG Ning, et al. Chinese J. Inorg. Chem., 2019, 35(8):1321-1339
Hou J H, Lan X F, Shi J S, et al. Int. J. Hydrogen Energy, 2020, 45(4):2852-2861
doi: 10.1016/j.ijhydene.2019.11.180
Lian Z C, Xu P P, Wang W C, et al. ACS Appl. Mater. Interfaces, 2015, 7(8):4533-4540
doi: 10.1021/am5088665
Song L M, Guo C P, Li T T, et al. Ceram. Int., 2017, 43 (10):7901-7907
doi: 10.1016/j.ceramint.2017.03.115
Long D, Chen W L, Rao X, et al. ChemCatChem, 2020, http://dx.doi.org/10.1002/cctc.201901958
Song T, Huo J P, Liao T, et al. Chem. Eng. J., 2016, 287: 359-366
doi: 10.1016/j.cej.2015.11.030
Huo J P, Zeng H P. J. Mater. Chem. A, 2015, 3(12):6258- 6264
doi: 10.1039/C5TA00397K
Chai B, Peng T Y, Zhang X H, et al. Dalton Trans., 2013, 42(10):3402-3409
doi: 10.1039/C2DT32458J
Guan J, Wu J H, Jiang D C, et al. Int. J. Hydrogen Energy, 2018, 43(18):8698-8706
doi: 10.1016/j.ijhydene.2018.03.148
Zhang S Q, Wang L L, Liu C B, et al. Water Res., 2017, 121:11-19
doi: 10.1016/j.watres.2017.05.013
Abe T, Tobinai S, Taira N, et al. J. Phys. Chem. C, 2011, 115(15):7701-7705
doi: 10.1021/jp1094992
Abe T, Hiyama Y, Fukui K, et al. Int. J. Hydrogen Energy, 2015, 40(30):9165-9170
doi: 10.1016/j.ijhydene.2015.05.155
Abe T, Fukui K, Kawai Y, et al. Chem. Commun., 2015, 52 (49):7735-7737
Chen Y, Chen H, Tian H N. Chem. Commun., 2015, 51(57): 11508-11511
doi: 10.1039/C5CC03856A
Bourgeteau T, Tondelier D, Geffroy B, at al. ACS Appl. Mater. Interfaces, 2015, 7(30):16395-16403
doi: 10.1021/acsami.5b03532
Yadav D, Yadav R K, Kumar A, et al. J. Appl. Polym. Sci., 2019, 137(14):48536
Coro J, Suárez M, Silva L S R, et al. Int. J. Hydrogen Energy, 2016, 41(40):17944-17959
doi: 10.1016/j.ijhydene.2016.08.043
Vinodgopal K, Haria M, Meisel D, et al. Nano Lett., 2004, 4(3):415-418
doi: 10.1021/nl035028y
Lee G, Shim J H, Kang H, et al. Chem. Commun., 2009 (33):5036-5038
doi: 10.1039/b911068b
Bończak B, Lisowski W, Kamińska A, et al. J. Phys. Chem. C, 2019, 123(10):6229-6240
doi: 10.1021/acs.jpcc.8b10842
Wang H H, Sun X, Lin Z C, et al. RSC Adv., 2018, 8(17): 9503-9511
doi: 10.1039/C8RA00100F
Yang X L, Zhen M M, Li G, et al. J. Mater. Chem. A, 2013, 1 (28):8105-8110
doi: 10.1039/c3ta11907f
Zhang X, Ma L X. J. Power Sources, 2015, 286:400-405
doi: 10.1016/j.jpowsour.2015.03.175
Barzegar H R, Hu G Z, Larsen C, et al. Carbon, 2014, 73: 34-40
doi: 10.1016/j.carbon.2014.02.028
Mondal S K. J. Electrochem. Soc., 2012, 159(5):K156-K160
doi: 10.1149/2.003206jes
Lin Z C, Wang H H, Li M. Electrocatalysis, 2019, 10:524- 531
doi: 10.1007/s12678-019-00535-4
Bai Z Y, Yang L, Guo Y M, et al. Chem. Commun., 2011, 47 (6):1752-1754
doi: 10.1039/C0CC04781C
Narwade S S, Mulik B B, Mali S M, et al. Appl. Surf. Sci., 2017, 396:939-944
doi: 10.1016/j.apsusc.2016.11.065
Zhong X, Yuan R, Chai Y. Chem. Commun., 2012, 48(4): 597-599
doi: 10.1039/C1CC16081H
Mao J J, Yang L F, Yu P, et al. Electrochem. Commun., 2012, 19:29-31
doi: 10.1016/j.elecom.2012.02.025
Xia C, Xia Y, Zhu P, et al. Science, 2019, 366(6462):226- 231
doi: 10.1126/science.aay1844
Hasanzadeh A, Khataee A, Zarei M, et al. Sci. Rep., 2019, 9:13780
doi: 10.1038/s41598-019-50155-7
Gao R, Dai Q B, Du F, at al. J. Am. Chem. Soc., 2019, 141 (29):11658-11666
doi: 10.1021/jacs.9b05006
Zhuo J Q, Wang T Y, Zhang G, et al. Angew. Chem. Int. Ed., 2013, 52(41):10867-10870
doi: 10.1002/anie.201305328
Choi Y H, Lee J, Parija A, et al. ACS Catal., 2016, 6(9): 6246-6254
doi: 10.1021/acscatal.6b01942
Du Z L, Jannatun N, Yu D Y, et al. Nanoscale, 2018, 10 (48):23070-23079
doi: 10.1039/C8NR07472K
Cao D F, Ye K, Moses O A, et al. ACS Nano, 2019, 13(10): 11733-11740
doi: 10.1021/acsnano.9b05714
Cheng Y S, Chu X P, Ling M, et al. Catal. Sci. Technol., 2019, 9(20):5668-5675
doi: 10.1039/C9CY01131E
Voriy D, Shin H S, Loh K P, et al. Nat. Rev. Chem., 2018, 2:0105
doi: 10.1038/s41570-017-0105
Guo X X, Du H T, Qu F L, et al. J. Mater. Chem. A, 2019, 7(8):3531-3543
doi: 10.1039/C8TA11201K
Chen Z P, Mou K W, Yao S Y, et al. J. Mater. Chem. A, 2018, 6(24):11236-11243
doi: 10.1039/C8TA03328E
Wang X Y, Zhao Q D, Yang B, et al. J. Mater. Chem. A, 2019, 7(44):25191-25202
doi: 10.1039/C9TA09681G
Sreekanth N, Nazrulla M A, VineeshT V, et al. Chem. Commun., 2015, 51(89):16061-16064
doi: 10.1039/C5CC06051F
Vasileff A, Zhi X, Xu C, et al. ACS Catal., 2019, 9(10): 9411-9417
doi: 10.1021/acscatal.9b02312
Pospíšil L, Bulíčková J, Hromadová M, et al. Chem. Commun., 2007(22):2270-2272
doi: 10.1039/B701017F
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
Jihua Deng , Xinshi Wu , Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
Yunchao Li , Shanying Chen , Ke Qi , Kangning Huo , Shuxin Li , Jingyi Li , Ying Wei , Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063