Citation: ZHAO Jing, XU Zhi-Guang, XU Xuan. Coordination Structures of Metal String Complexes [MoMoCo(npo)4(NCS)2] and Relationship with External Electric Field[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(4): 666-672. doi: 10.11862/CJIC.2020.077 shu

Coordination Structures of Metal String Complexes [MoMoCo(npo)4(NCS)2] and Relationship with External Electric Field

  • Corresponding author: XU Xuan, xuxuan@scnu.edu.cn
  • Received Date: 29 August 2019
    Revised Date: 31 December 2019

Figures(8)

  • Metal string complexes, with the structure of linear metal chain helically wrapped by four equatorial ligands, have attracted extensively attention due to their unique electronic, magnetic, and potential applications in molecular electronics. Some factors such as difference of metal atoms, axial ligands and equatorial ligands would affect the physical properties of conductance and magnetic properties of metal string complexes. The diversity of equatorial ligands provides more possibilities for such changes. The coordination structures of metal string complexes[MoMoCo(npo)4(NCS)2] (npo=1, 8-naphthyl-2-ketone) with potential applications as molecular wires have been investigated using the density functional theory B3LYP method by considering the effects of an external electric field (EF). The coordination mode is denoted as (n, m), where n and m represent the number of oxygen atoms coordinated with the Co3 and Mo1, respectively, and n=0, 1, 2, 3, 4; m=4, 3, 2, 1, 0. The energies and polarities of these molecules increase gradually as the coordination modes of four npo- ligands become more and more consistent, but all of them can exist stably and compete with each other. The Mo-Mo quadruple bond exists in all molecules, and the bond length decreases with the decrease of the Z-direction dipole moment μ(Z). In addition, as the value of μ(Z) decreases, the orbital energy of πNCS*(1) decreases but that of πNCS*(2) increases. The geometric and electronic structures of the five coordination modes change regularly under the action of electric field. Under the electric field effect of Z direction, the Mo1-N8 bond lengths of all coordination modes except (0, 4) increase obviously, leading to structural instability. Moreover, the phenomenons of energy level interlacing in the frontier orbitals, and the reduction of LUMO-HOMO energy gap are related to the value of μ(Z). When μ(Z) is positive, the energy gaps of (0, 4) and (1, 3) decrease more significantly under the electric field effect of -Z direction. However, when μ(Z) is negative, the energy gaps of (2, 2), (3, 1) and (4, 0) decrease more obviously under the electric field effect of Z direction. Therefore, the complexes of (0, 4), (3, 1) and (4, 0) may have the rectification effect, but (3, 1) and (4, 0) are less stable.
  • 加载中
    1. [1]

      Wu L P, Field P, Morrissey T, et al. J. Chem. Soc. Dalton Trans., 1990, 12:3835-3840
       

    2. [2]

      Aduldecha S, Hathaway B. J. Chem. Soc. Dalton Trans., 1991, 4:993-998
       

    3. [3]

      Yang E C, Cheng M C, Tsai M S, et al. Chem. Commun., 1994, 20:2377-2378
       

    4. [4]

      Cotton F A, Daniels L M, Jordan G T, et al. J. Am. Chem., Soc., 1997, 119:10223-10224  doi: 10.1021/ja971998+

    5. [5]

      Clérac R, Cotton F A, Jeffery S P, et al. Inorg. Chem., 2001, 40:1265-1270  doi: 10.1021/ic001069a

    6. [6]

      Berry J F, Cotton F A, Murillo C A, et al. Inorg. Chem., 2004, 43(7):2277-2283  doi: 10.1021/ic0354320

    7. [7]

      Clérac R, Cotton F A, Daniels L M, et al. J. Am. Chem. Soc., 2000, 122:6226-6236  doi: 10.1021/ja000515q

    8. [8]

      Ismayilov R H, Wang W, Lee G H, et al. Dalton Trans., 2007, 21(27):2898-2907
       

    9. [9]

      Nippe M, Berry J F. J. Am. Chem. Soc., 2007, 129(42):12684-12685  doi: 10.1021/ja076337j

    10. [10]

      Nippe M, Turov Y, Berry J F. Inorg. Chem., 2011, 50(21):10592-10599  doi: 10.1021/ic2011309

    11. [11]

      Clérac R, Cotton F A, Daniels L M, et al. Inorg. Chem., 2000, 39(4):752-756

    12. [12]

      Cotton F A, Lei P, Murillo C A. Inorg. Chem. Acta, 2003, 349:173-181  doi: 10.1016/S0020-1693(03)00093-8

    13. [13]

      Yu L C, Lee G H, Sigrist M, et al. Eur. J. Inorg. Chem., 2016, 26:4250-4256

    14. [14]

      ZHI Sha-Sha, BAN Ying, XU Zhi-Guang, et al. Chem. J. Chinese Universities, 2019, 40(5):980-987
       

    15. [15]

      Spivak M, Lopez X, Graaf C D. J. Phys. Chem. A, 2019, 123:1538-1547  doi: 10.1021/acs.jpca.8b10124

    16. [16]

      Chipman J A, Berry J F. Inorg. Chem., 2018, 57:9354-9363  doi: 10.1021/acs.inorgchem.8b01331

    17. [17]

      Chipman J A, Berry J F. Chem.-Eur. J., 2018, 24:1494-1499  doi: 10.1002/chem.201704588

    18. [18]

      DeBrincat D, Keers O, McGrady J E. Chem. Commun., 2013, 49:9116-9118  doi: 10.1039/c3cc45063e

    19. [19]

      Cotton F A, Lei P, Murillo C A, et al. Inorg. Chem. Acta, 2003, 349(5):165-172
       

    20. [20]

      Liu I P C, Chen C H, Chen C F, et al. Chem. Commun., 2009, 7(5):577-579

    21. [21]

      HUANG Yan, HUANG Xiao, XU Xuan. Acta Phys.-Chim. Sin., 2013, 29(6):1225-1232  doi: 10.3866/PKU.WHXB201303181

    22. [22]

      Chang W C, Chang C W, Sigrist M, et al. Chem. Commun., 2017, 53:8886-8889  doi: 10.1039/C7CC05449A

    23. [23]

      DING Dan-Dan, XU Xuan, XU Zhi-Guang. Acta Phys.-Chim. Sin., 2015, 31(7):1323-1330
       

    24. [24]

      Becke A D. J. Chem. Phys., 1993, 98(7):5648-5652  doi: 10.1063/1.464913

    25. [25]

      Becke A D. Phys. Rev. A, 1988, 38(6):3098-3100  doi: 10.1103/PhysRevA.38.3098

    26. [26]

      Lee C, Yang W, Parr R G. Phys. Rev., 1988, 37:785-789  doi: 10.1103/PhysRevB.37.785

    27. [27]

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision D.02, Gaussian Inc.: Wallingford, CT, 2003.

    28. [28]

      Pal K, Nakao K, Mashima K. Eur. J. Inorg. Chem., 2010, 36:5668-5674

    29. [29]

      Holste G, Schäfer H. Z. Anorg. Allg. Chem., 1972, 391:263-270  doi: 10.1002/zaac.19723910307

    30. [30]

      Cotton F A, Norman J G. J. Coord. Chem., 1972, 1:161-171  doi: 10.1080/00958977208070758

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    9. [9]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    13. [13]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    14. [14]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    15. [15]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    16. [16]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    19. [19]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    20. [20]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

Metrics
  • PDF Downloads(5)
  • Abstract views(846)
  • HTML views(210)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return