Citation: ZHENG Xiao-Yuan, LIU Yang, LIU Yi, QIN Liu-Lei, WANG Le, LIU Zun-Qi. Synthesis, Phase Transition and Dielectric Properties of Ferrate Cyanogen(Ⅲ) Hydrogen-Bonding Supramolecular Crystal[J]. Chinese Journal of Inorganic Chemistry, ;2020, 36(3): 406-414. doi: 10.11862/CJIC.2020.049 shu

Synthesis, Phase Transition and Dielectric Properties of Ferrate Cyanogen(Ⅲ) Hydrogen-Bonding Supramolecular Crystal

Figures(10)

  • Synthesis of novel ferric cyanide hydrogen-bonding cage-like supramolecular crystal material (C3H5N2)3[Fe(CN)6]·2(18-crown-6)·2H2O (1) by solvent evaporation in methanol solution with imidazole, 18-crown-6 and ferric cyanide. The structure, thermal energy and electrical properties of the crystal were characterized by variable temperature X-ray diffraction single crystal diffraction, infrared spectroscopy, elemental analysis, thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and dielectric constant test. The space group of the crystal is P21/c, which belongs to the monoclinic system at low temperatures. The crystal structure shows that the cyano-iron complex, the water molecule and the imidazolium cation form a three-dimensional cage structure with iron atoms as the apex in the form of hydrogen bonds. This resulted in phase transition at around 250 K and stepped reversible dielectric anomalies in a range of 220~260 K. Temperature variation triggers the cage structure abrupt change, and at the same time causes dynamic oscillation of supramolecules within the framework of[Fe(CN)6]3-, thus induces the phase transition of crystal structure. The phase transition temperature interval of the crystal structure was accompanied with step-like change in dielectric physical properties. The dielectric constant was reversible and changed from 38 to 43 with temperature increasing from 220 to 280 K. Above 270 K, the sudden jump in dielectric is caused by water vapor.
  • 加载中
    1. [1]

      Kong L H, Fu D W, Ye Q, et al. Chin. Chem. Lett., 2014, 25 (6):844-848

    2. [2]

      YANG Kang, TAN Yu-Hui, WANG Bin, et al. Chinese J. Inorg. Chem., 2019, 35 (4):703-710
       

    3. [3]

      Liu Z Q, Liu Y, Wang J F, et al. Inorg. Chem. Commun., 2015(61):109-112

    4. [4]

      Zhang W, Xiong R G. Chem. Rev., 2012, 112(2):1163-1195

    5. [5]

      Zhang W, Ye H Y, Xiong R G, et al. J. Am. Chem. Soc., 2013, 135(14):5230-5233

    6. [6]

      LI Xiang, ZHAO Huai-An, SU Jian, et al. Chinese J. Inorg. Chem., 2019, 35(1): 109-115
       

    7. [7]

      Gil D M, Carbonio R E, Gómez M I. J. Mol. Struct.: THEOCHEM, 2013, 1041:23-28

    8. [8]

      Li Q, Shi P P, Ye Q, et al. Inorg. Chem., 2015, 54(22):10642 -10647

    9. [9]

      Wong-Ng W, Culp J T, Chen Y S. Solid State Sci., 2016, 52 (1):1-9

    10. [10]

      Li L N, Sun Z H, Wang P, et al. Angew. Chem. Int. Ed., 2017, 129(40):12150-12154
       

    11. [11]

      ZHOU Xin, YE Jing, WANG Zhi-Hua, et al. Chinese J. Inorg. Chem., 2019, 35(1): 43-49
       

    12. [12]

      Wang X Q, Cheng X F, Zhang S J, et al. Physica B, 2010, 405(4):1071-1080
       

    13. [13]

      Hang T, Zhang W, Ye H Y, et al. Chem. Soc. Rev., 2011, 40 (7):3577-3598
       

    14. [14]

      Li L N, Shang X Y, Wang S S, et al. J. Am. Chem. Soc., 2018, 140(22):6806-6809

    15. [15]

      Ohshima Y, Kubo K, Matsumoto T, et al. CrystEngComm, 2016, 18(41):7959-7964

    16. [16]

      Li S G, Luo J H, Sun Z H, et al. Cryst. Growth. Des., 2013, 13(6):2675-2679
       

    17. [17]

      Jin Y, Yu C H, Wang Y F, et al. Z. Anorg. Allg. Chem., 2014, 640(7):1499-1505
       

    18. [18]

      Liu Z Q, Liu Y, Chen Y, et al. Chin. Chem. Lett., 2017, 28 (2):297-301

    19. [19]

      WANG Qi, CHENG Ming, CAO Yi-Han, et al. Acta Chim. Sinica, 2016, 74(1):9-16
       

    20. [20]

      Jin Y, Yu C H, Wang Y F, et al. Z. Anorg. Allg. Chem., 2014, 640(7):1499-1505
       

    21. [21]

      Jia H L, Jia M J, Yu J H, et al. Dalton. Trans., 2013, 42(18): 6429-6439

    22. [22]

      Ye H Y, Li S H, Zhang Y, et al. J. Am. Chem. Soc., 2014, 136(28):10033-10040
       

    23. [23]

      Xiao X W, Xu H, Xu W. Synth. Met., 2004, 144(1):51-53

    24. [24]

      Yoshida R, Kodama T, Kikuchi K, et al. Synth. Met., 2015, 208:43-48

    25. [25]

      Yu S S, Liu S X, Duan H B. Dalton Trans., 2015, 44(48): 20822-20825

    26. [26]

      ZHAO Wang, ZHENG Qing-Hua, PING Zhao-Yan, et al. Journal of Synthetic Crystals, 2019, 48(1):149-154
       

    27. [27]

      Sun Z H, Li J, Ji C M, et al. J. Am. Chem. Soc., 2017, 139 (44):15900-15906
       

    28. [28]

      Rok M, Prytys J K, Kinzhybalo V, et al. Dalton Trans., 2017, 46(7):2322-2331
       

    29. [29]

      Han X B, Hu P, Shi C, et al. J. Mol. Struct., 2017, 1127: 372-376
       

    30. [30]

      Tang Y Z, Gu Z F, Yang C S, et al. Chemistry Select, 2016, 1(22):6772-6776

    31. [31]

      Zhang W, Cai Y, Xiong R G, et al. Angew. Chem. Int. Ed., 2010, 49(37):6608-6610

    32. [32]

      Wang T T, Jia Y Y, Chen Q, et al. Sci. Chin. Chem., 2016, 59(8):959-964
       

    33. [33]

      González R, Acosta A, Chiozzone R, et al. Inorg. Chem., 2012, 51(10):5737-5747
       

    34. [34]

      ZHENG Xiao-Yuan, LIU Yang, QIN Liu-Lei, et al. Chinese J. Inorg. Chem., 2019, 35(02):277-284
       

    35. [35]

      Sheldrick G M. SHELXS-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    9. [9]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    10. [10]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    15. [15]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    16. [16]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    17. [17]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    20. [20]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

Metrics
  • PDF Downloads(9)
  • Abstract views(1613)
  • HTML views(320)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return