Citation: WANG Ya-Qin, ZHANG Hai-Xia, ZHANG Shu-Heng, HE Wei, GE Fang-Yuan, CHEN Yu-Xin, GU Zhi-Guo. Synthesis and Gelation Ability of Spin-Crossover Iron(Ⅱ) Alkyl Imidazole Complexes[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(12): 2260-2268. doi: 10.11862/CJIC.2019.254 shu

Synthesis and Gelation Ability of Spin-Crossover Iron(Ⅱ) Alkyl Imidazole Complexes

Figures(7)

  • Complexes 1~5 were synthesized by one-step reaction of 1-heptyl-1H-imidazole-2-carboxaldehyde(L1), 1-tetradecyl-1H-imidazole-2-carbaldehyde(L2), 1-hexadecyl-1H-imidazole-2-carbaldehyde(L3), 1-octadecyl-1H-imidazole-2-carboxaldehyde(L4), 1-eicosyl-1H-imidazole-2-carboxaldehyde(L5) with ferrous tetrafluoroborate and 1-phenylethylamine, respectively. The five complexes have been determined by IR spectra and elemental analysis. X-ray crystallography reveals that each unit in 1 contains one[Fe(L1)3]2+ cation and two BF4- anions. The iron(Ⅱ) center coordinates with six N donor atoms from three ligands to form a octahedral mononuclear compound with fac-configuration. The Fe(Ⅱ)-N bond distances indicate that the Fe(Ⅱ) sites of 1 are in low-spin state. As for[Fe(L1)3]2+, intramolecular π-π interactions are present between phenyl group and imidazole ring of an adjacent ligand, and then a supramolecular architectures are further formed by C-H…π interactions between alkyl chain and aromatic ring. Magnetic measurements reveal that 1 displays incomplete spin-crossover behaviour at 341 K, and 2 is a high-spin paramagnetic compound, while 3~5 show incomplete spin-crossover behaviour. The corresponding metallogels MOG2~MOG5 were formed by using complexes 2~5 with longer alkyl chains as gelator and cyclohexane as solvent. Scanning electron microscopy(SEM) images showed that the MOG2~MOG5 had 3D network pore structure. Reversible gel-sol transitions were found in MOG2~MOG5. Under the influence of heat and mechanical force, MOG2~MOG5 were rapidly converted to sol, which can be restored to gel after being stationary, showing good stimulation-response and self-healing ability.
  • 加载中
    1. [1]

      (a) Draper E R, Adams D. Chem, 2017, 3: 390-410
      (b)Gronwald O, Snip E, Shinkai S. Curr. Opin. Colloid Interface Sci., 2002, 7: 148-156

    2. [2]

      (a) Cheng N, Kang Q, Xiao J, et al. J. Colloid and Interface Sci., 2018, 511: 215-221
      (b)Piepenbrock M M, Lloyd G O, Clarke N, et al. Chem. Rev., 2010, 110: 1960-2004

    3. [3]

    4. [4]

    5. [5]

      (a) Rahim M A, Hata Y, Bjornmalm M, et al. Small, 2018, 14: 1801202
      (b)Rambabu D, Negi Priyanka, Dhir A, et al. Inorg. Chem. Commun., 2018, 93: 6-9

    6. [6]

    7. [7]

      (a) Halcrow M A. Chem. Soc. Rev., 2011, 40: 4119-4142
      (b)Bousseksou A, Molnar G, Salmon L, et al. Chem. Soc. Rev., 2011, 40: 3313-3335
      (c)Cook L J K, Mohammed R, Sherborne G, et al. Coord. Chem. Rev., 2015, 289: 2-12
      (d)Guionneau P. Dalton Trans., 2014, 43: 382-393
      (e)Rosner B, Milek M, Witt A, et al. Angew. Chem. Int. Ed., 2015, 54: 12976-12980

    8. [8]

    9. [9]

      (a) Li H, Peng H N. Curr. Opin. Colloid Interface Sci., 2019, 35: 9-16
      (b)Gaspar A B, Seredyuk M. Coord. Chem. Rev., 2014, 268: 41-58

    10. [10]

      (a) Grondin P, Roubeau O, Castro M, et al. Langmuir, 2010, 26: 5184-5195
      (b)Roubeau O, Colin A, Schmitt V, et al. Angew. Chem. Int. Ed., 2004, 43: 3283-3286
      (c)Tsuyohiko F, Jiang D L, Aida T. Chem. Asian J., 2007, 2: 106-113

    11. [11]

      SAINT-Plus, Ver. 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.

    12. [12]

      Sheldrick G M. SADABS, An Empirical Absorption Correction Program, Bruker Analytical X-ray Systems, Madison, WI, 1996.

    13. [13]

      Sheldrick G M. SHELXTL-97, Universitity of Göttingen, Germany, 1997.

    14. [14]

      (a) Nishida Y, Kino K, Kida S. Dalton Trans., 1987, 5: 1157-1161
      (b)König E P. Inorg. Chem., 1987, 35: 527-623

    15. [15]

      (a) Niel V, Martinez-Agudo J M, Munoz M C, et al. Inorg. Chem., 2001, 40: 3838-3839
      (b)Nishi K, Matsumoto N, Iijima S. Inorg. Chem., 2011, 50: 11303-11305

    16. [16]

      (a) Matouzenko G S, Jeanneau E, Verat A Y, et al. Dalton Trans., 2011, 40: 9608-9618
      (b)Zhang W, Zhao F, Liu T, et al. Inorg. Chem., 2007, 46: 2541-2555

    17. [17]

    18. [18]

      ZHENG Xue-Jing, LIU Fang-Bei, PEI Ying, et al. Polymer Bulletin, 2017, 5:1-10
       

    19. [19]

      Adrus N, Ulbrcht M. React. Funct. Polym., 2013, 73:141-148  doi: 10.1016/j.reactfunctpolym.2012.08.015

    20. [20]

      Miao W, Yang D, Liu M. Chem. Eur. J., 2015, 21:7562-7570  doi: 10.1002/chem.201500097

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    5. [5]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    8. [8]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    12. [12]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    13. [13]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    14. [14]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    15. [15]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    16. [16]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    20. [20]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

Metrics
  • PDF Downloads(3)
  • Abstract views(802)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return