Effect of Different Co contents on Structure of Nanoporous Ni-Co and Catalytic Performance of Hydrogen Evolution
- Corresponding author: ZHOU Qi, zhouxq301@sina.com
Citation:
FENG Ji-Wei, ZHOU Qi. Effect of Different Co contents on Structure of Nanoporous Ni-Co and Catalytic Performance of Hydrogen Evolution[J]. Chinese Journal of Inorganic Chemistry,
;2019, 35(10): 1746-1754.
doi:
10.11862/CJIC.2019.215
ZHOU Qi, LI Zhi-Yang. Chinese J. Inorg. Chem., 2018, 34(12):2188-2196
doi: 10.11862/CJIC.2018.268
WAN Meng, YU Dan-Ni, ZHU Han, et al. Chinese J. Inorg. Chem., 2017, 33(4):595-600
Nishikawa K, Dokko K, Kinoshita K, et al. J. Power Sources, 2009, 189:726-729
doi: 10.1016/j.jpowsour.2008.08.041
Marozzi C A, Chialvo A C. Electrochim. Acta, 2001, 46:861-866
doi: 10.1016/S0013-4686(00)00670-8
Rafailovic L D, Gammerb C, Rentenberger C, et al. Nano Energy, 2013, 2:523-529
doi: 10.1016/j.nanoen.2012.12.004
Raoofa J B, Ojania R, Kiani A, et al. Int. J. Hydrogen Energy, 2010, 35:452-458
doi: 10.1016/j.ijhydene.2009.10.069
WANG Hua, DUAN Cheng-Lin. Electropla-ting&Finishing, 2011, 30(8):1-5
Safizadeh F, Ghali E, Houlachi G. Int. J. Hydrogen Energy, 2015, 40:256-274
doi: 10.1016/j.ijhydene.2014.10.109
Yeo I H, Johnson D C. J. Electroanal. Chem., 2001, 495(2):110-119
Cai J, Xu J, Wang J M, et al. Int. J. Hydrogen Energy, 2013, 38(2):934-941
doi: 10.1016/j.ijhydene.2012.10.084
Yang Y F, Yang H, Liang C J, et al. Int. J. Electrochem. Sci., 2018, 13:7193-7205
Zhang W B, Zeng J C, Liu H G, et al. J. Catal., 2019, 372:277-286
doi: 10.1016/j.jcat.2019.03.014
HAN Qing, SUN Ke-Ning, DONG Xiao-Hui, et al. Journal of Northeastern University, 2009, 30(5):704-707
Lupi C, Dell'Era A, Pasquali M. Int. J. Hydrogen Energy, 2009, 34(5):2101-2106
doi: 10.1016/j.ijhydene.2009.01.015
Wang M Y, Wang Z, Guo Z C. Mater. Lett., 2010, 64(10):1166-1168
doi: 10.1016/j.matlet.2010.02.040
Lacnjevac U, Jovic B M, Jovic V D. Electrochim. Acta, 2009, 55(2):535-543
doi: 10.1016/j.electacta.2009.09.012
Danyman M, Cansever N. J. Alloys Compd., 2010, 493(1/2):649-653
ZOU Yong-Jing, XIAO Zuo-An, FEI Xi-Ming. Chinese Journal of Rare Metals, 2004, 28(5):954-957
doi: 10.3969/j.issn.0258-7076.2004.05.033
Solmaz R, Doner A, Sahin I, et al. Int. J. Hydrogen Energy, 2009, 34(19):7901-7918
WANG Guo-Qing, WEI Hai-Jun, ZHU Lei, et al. Chinese Journal of Rare Metals, 2010, 34(5):712-715
doi: 10.3969/j.issn.0258-7076.2010.05.016
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
Wenruo NI , Hongpeng LI , Yun ZHANG , Yiran TIAN , Jiehui RUI , Yingcheng TONG , Xiaolin PI , Zhenyan TANG . Research progress of ruthenium alloy catalysts in hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 23-44. doi: 10.11862/CJIC.20250188
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Jianqiao ZHANG , Yang LIU , Yan HE , Yaling ZHOU , Fan YANG , Shihui CHENG , Bin XIA , Zhong WANG , Shijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Yuqiong Li , Bing Lan , Bin Guan , Chunlong Dai , Fan Zhang , Zifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Ruyan Liu , Zhenrui Ni , Olim Ruzimuradov , Khayit Turayev , Tao Liu , Luo Yu , Panyong Kuang . Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100159-0. doi: 10.1016/j.actphy.2025.100159
Hailang JIA , Yujie LU , Pengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Kai PENG , Xinyi ZHAO , Zixi CHEN , Xuhai ZHANG , Yuqiao ZENG , Jianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
(a) Ni1Co4Al95; (b) Ni1.5Co3.5Al95; (c) Ni2Co3Al95; (d) Ni2.5Co2.5Al95; (e) Ni3Co2Al95; (f) Ni3.5Co1.5Al95; (g) Ni4Co1Al95
(a) Ni1Co4; (b) Ni1.5Co3.5; (c) Ni2Co3; (d) Ni2.5Co2.5; (e) Ni3Co2; (f) Ni3.5Co1.5; (g) Ni4Co1
(a) Ni1Co4; (b) Ni1.5Co3.5; (c) Ni2Co3; (d) Ni2.5Co2.5; (e) Ni3Co2; (f) Ni3.5Co1.5; (g) Ni4Co1
(a, b) Ni1Co4; (c, d) Ni1.5Co3.5; (e, f) Ni2Co3; (g, h) Ni2.5Co2.5; (i, j) Ni3Co2; (k, l) Ni3.5Co1.5; (m, n) Ni4Co1
(a) Ni1Co4; (b) Ni1.5Co3.5; (c) Ni2Co3; (d) Ni2.5Co2.5; (e) Ni3Co2; (f) Ni3.5Co1.5; (g) Ni4Co1
(a) Ni1Co4/GCE; (b) Ni1.5Co3.5/GCE; (c) Ni2Co3/GCE; (d) Ni2.5Co2.5/GCE; (e) Ni3Co2/GCE; (f) Ni3.5Co1.5/GCE; (g) Ni4Co1/GCE