Citation: MENG Guo-Xiang, TIAN Xiao-Xia, ZHANG Jia-Rui, ZHANG Xiang, HAN Feng-Qing, QU Shao-Bo. Effects of Donor-Doped on Photocatalytic Properties of BaTiO3-Based Nanoparticle[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(8): 1387-1395. doi: 10.11862/CJIC.2019.183 shu

Effects of Donor-Doped on Photocatalytic Properties of BaTiO3-Based Nanoparticle

Figures(8)

  • Cu2O was synthesized by chemical precipitation, La doped BaTiO3-based powders were synthesized via a hydrothermal method using the Cu2O as the sacrifice template. The structure, morphology and visible light properties have been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscope (HR-TEM), X-ray photoelectron spectroscopy (XPS), scanning electron micro-graphs (SEM), UV-Vis diffuse reflectance spectrophotometer (UV-Vis DRS). The results showed that the doping of La3+ increased the conductivity and made the range of photo-response broadened, which reduced the band gap of the semiconductor and accelerated the separation of photo-generated electron hole pairs. The surface defects were induced with a facile and effective approach by La3+ ion doping, and the photocatalytic performance of BaTiO3 was improved. However, as the doping amount of La3+ ions increased, the band gap of the semiconductors decreased and the redox ability of the phototgenerated electrons and holes deceased when the dopant was excessive. When the doping amount was 4%(w/w), the photocatalytic performance of the sample was the best, and the degradation efficiency of 4-nitrophenol was 93.2% after 360 min visible light irradiation. The decomposition rate of 4-nitrophenol was still above 86.7% even after 5 cycles, thus artificial catalytic defects of La donor-doped BaTiO3-based nanoparticle could effectively improve the photocatalytic properties.
  • 加载中
    1. [1]

      CAI Tian-Yi, JU Sheng. Acta Phys. Sin., 2018, 67(15):157801  doi: 10.7498/aps.67.20180979

    2. [2]

      Anisimov V I, Zaanen J, Andersen O K. Phys. Rev. B, 1991, 44:943-954  doi: 10.1103/PhysRevB.44.943

    3. [3]

      Yang S Y, Seidel J, Byrnes S J, et al. Nat. Nanotechnol., 2010, 5:143-147  doi: 10.1038/nnano.2009.451

    4. [4]

      Brody P S, Crowne F. J. Mater. Sci., 1975, 4:955-971
       

    5. [5]

      Glass A M, Linde D V D, Negran T J. Appl. Phys. Lett., 1974, 25:233-235  doi: 10.1063/1.1655453

    6. [6]

      Tada H, Jin Q, Nishijima H, et al. Angew. Chem. Int. Ed., 2011, 50(15):3501-3505  doi: 10.1002/anie.201007869

    7. [7]

      Ichiki M, Maeda R, Morikawa Y, et al. Jpn. J. Appl. Phys., 2005, 44(98):6927-6933

    8. [8]

      Xu T G, Zhang L W, Cheng H Y, et al. Appl. Catal. B, 2011, 101(3/4):382-387
       

    9. [9]

      Zhang N, Gao C, Xiong Y. J. Energy Chem., 2019, 37(10):43-57

    10. [10]

      Bai S, Zhang N, Gao C, et al. Nano Energy, 2018, 53(11):296-336
       

    11. [11]

      Sun S D, Yang Z M. Chem. Commun., 2014, 50(56):7403-7415  doi: 10.1039/c4cc00304g

    12. [12]

      LIU Guo-Cun, JIN Zhen, ZHANG Xi-Bin, et al. The Chinese Journal of Nonferrous Metals, 2013, 23(3):1004-0609
       

    13. [13]

      Reddy B P, Sekhar M C, Prakash B P, et al. Ceram. Int., 2018, 44(16):19512-19521  doi: 10.1016/j.ceramint.2018.07.191

    14. [14]

      Venkata S P, Patrick L, Shiva A, et al. J. Adv. Ceram., 2015, 5(3):1550027
       

    15. [15]

      Kurata N, Kuwabara M. J. Ceram. Soc. Jpn., 1997, 105(5):436-439

    16. [16]

      XIA Chang-Tai, ZHONG Wei-Zhuo. J. Inorg. Mater., 1995(3):293-300
       

    17. [17]

      ZHAI Xue-Liang. Journal of the Chinese Ceramic Society, 2000, 28(4):358-360
       

    18. [18]

      WANG Wei-Peng, YANG Hua, XIAN Tao, et al. Chinese Journal of Catalysis, 2012, 33:354-359
       

    19. [19]

      REN Zheng-Ling, LU Chen-Yang, WANG An-Jie, et al. CIESC Journal, 2017, 68(6):2611-2617
       

    20. [20]

      Zhang Y, Deng B, Zhang T R, et al. J. Phys. Chem. C, 2010, 114(11):5073-5079  doi: 10.1021/jp9110037

    21. [21]

      Fang J X, Lebedkin S, Yang S C, et al. Chem. Commun., 2011, 47:5157-5159  doi: 10.1039/c1cc10328h

    22. [22]

      Qin Y, Che R C, Liang C Y, et al. J. Mater. Chem., 2011, 21:3960-3965  doi: 10.1039/c0jm03211e

    23. [23]

      Wang Z Y, Luan D Y, Li C M, et al. J. Am. Chem. Soc., 2010, 132:16271-16277  doi: 10.1021/ja107871r

    24. [24]

      Sun S D, Yang Q, Liang S H, et al. CrystEngComm, 2017, 19:6225-6251  doi: 10.1039/C7CE01530E

    25. [25]

      XIA Chang-Tai, SHI Er-Wei, ZHONG Wei-Zhuo. Chin. Sci. Bull., 1996, 41(5):471-474  doi: 10.3321/j.issn:0023-074X.1996.05.023

    26. [26]

      ZHOU Xue-Nong, CHEN Li-Sha, ZHAO Fang, et al. Journal of Synthetic Crystals, 1997, 26(3/4):362
       

    27. [27]

      MENG Wan-Wan, HU Rui-Sheng, YANG Jun, et al. Chinese Journal of Catalysis, 2016, 8:1283-1292
       

    28. [28]

      XU Qing-Qing, LÜ Liang, YE Dong-Ju, et al. Chinese J. Inorg. Chem., 2017, 33(7):1205-1216
       

    29. [29]

      Kishi H, Kohzu N, Sugino J, et al. J. Eur. Ceram. Soc., 1999, 19(6/7):1043-1046

    30. [30]

      Castro M S, Salgueiro W, Somoza A. J. Phys. Chem. Solids, 2007, 68(7):1315-1323  doi: 10.1016/j.jpcs.2007.02.017

    31. [31]

      Patio E, Stashans A. Comput. Mater. Sci., 2001, 22(3):137-143

    32. [32]

      YU Da-Shu, WANG Li-Qun, FENG Jia-Zhen. Journal of Tianjin Normal University:Natural Science Edition, 2002, 24(4):23-26

    33. [33]

      Smyth D M M, Translated by YAO Xi(姚熹), The Defect Chemistry of Metal Oxides(金属氧化物中的缺陷化学). Xi'an: Xi'an Jiaotong University Press, 2006, 11: 276-277

    34. [34]

      PU Yong-Ping(蒲永平). The Defect Chemistry of Functional Materials(功能材料的缺陷化学). Beijing: Chemical Industry Press, 2008, 4: 60-81

    35. [35]

      LU Yu-Dong, WANG Xin, ZHUANG Zhi-Qiang, et al. Chinese J. Inorg. Chem., 2007, 23(7):1234-1237  doi: 10.3321/j.issn:1001-4861.2007.07.019
       

    36. [36]

      Li G W, Blake G R, Palstra T T. Chem. Soc. Rev., 2017, 46:1693-1706  doi: 10.1039/C6CS00571C

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    3. [3]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    4. [4]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    8. [8]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    15. [15]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    16. [16]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(20)
  • Abstract views(2349)
  • HTML views(623)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return