Photocatalysts: Z-Scheme Heterojunction Constructed with Titanium Dioxide
- Corresponding author: WANG Wei, Wei.wang@uib.no WU Rong-Lan, wuronglan@163.com
Citation:
MEI Qiu-Feng, ZHANG Fei-Yan, WANG Ning, LU Wen-Sheng, SU Xin-Tai, WANG Wei, WU Rong-Lan. Photocatalysts: Z-Scheme Heterojunction Constructed with Titanium Dioxide[J]. Chinese Journal of Inorganic Chemistry,
;2019, 35(8): 1321-1339.
doi:
10.11862/CJIC.2019.167
Fujishima A, Honda K. Nature, 1972, 238:37-38
doi: 10.1038/238037a0
Chong M N, Jin B, Chow C W K, et al. Water Res., 2010, 44(10):2997-3027
doi: 10.1016/j.watres.2010.02.039
Shi Y M, Zhang B. Chem. Soc. Rev., 2016, 45(6):1529-1541
doi: 10.1039/C5CS00434A
Zhu M S, Sun Z C, Fujitsuka M, et al. Angew. Chem. Int. Ed., 2018, 57(8):2160-2164
doi: 10.1002/anie.201711357
Fang M, Dong G F, Wei R J, et al. Adv. Energy Mater., 2017, 7(23):1700559
doi: 10.1002/aenm.201700559
Chen Y, Jia G, Hu Y F, et al. Sustainable Energy Fuels, 2017, 1(9):1875-1898
doi: 10.1039/C7SE00344G
Oh Y, Hu X L. Chem. Soc. Rev., 2013, 42(6):2253-2261
doi: 10.1039/C2CS35276A
Qi K Z, Cheng B, Yu J G, et al. Chinese J. Catal., 2017, 38(12):1936-1955
doi: 10.1016/S1872-2067(17)62962-0
Schneider J, Matsuoka M, Takeuchi M, et al. Chem. Rev., 2014, 114(19):9919-9986
doi: 10.1021/cr5001892
Cong Y, Li X K, Qin Y, et al. Appl. Catal. B, 2011, 107(1):128-134
Ohno T, Akiyoshi M, Umebayashi T, et al. Appl. Catal. A, 2004, 265(1):115-121
Cong Y, Zhang J L, Chen F, et al. J. Phys. Chem. C, 2007, 111(19):6976-6982
doi: 10.1021/jp0685030
Hong X T, Wang Z P, Cai W M, et al. Chem. Mater., 2005, 17(6):1548-1552
doi: 10.1021/cm047891k
Xu S C, Zhang Y X, Pan S S, et al. J. Hazard. Mater., 2011, 196:29-35
doi: 10.1016/j.jhazmat.2011.08.068
Dong J Y, Han J, Liu Y S, et al. ACS Appl. Mater. Interfaces, 2014, 6(3):1385-1388
doi: 10.1021/am405549p
Wu M C, Chih J S, Huang W K. CrystEngComm, 2014, 16(46):10692-10699
doi: 10.1039/C4CE01348D
Xing M Y, Yang B X, Yu H, et al. J. Phys. Chem. Lett., 2013, 4(22):3910-3917
doi: 10.1021/jz4021102
Yu J G, Qi L F, Jaroniec M. J. Phys. Chem. C, 2010, 114(30):13118-13125
doi: 10.1021/jp104488b
Cozzoli P D, Fanizza E, Comparelli R, et al. J. Phys. Chem. B, 2004, 108(28):9623-9630
doi: 10.1021/jp0379751
Ortel E, Sokolov S, Zielke C, et al. Chem. Mater., 2012, 24(20):3828-3838
doi: 10.1021/cm301081w
Yan B L, Zhang L J, Tang Z Y, et al. Appl. Catal. B, 2017, 218:743-750
doi: 10.1016/j.apcatb.2017.07.020
Wang M G, Han J, Hu Y M, et al. ACS Appl. Mater. Interfaces, 2016, 8(43):29511-29521
doi: 10.1021/acsami.6b10480
Khanchandani S, Kumar S, Ganguli A K. ACS Sustainable Chem. Eng., 2016, 4(3):1487-1499
doi: 10.1021/acssuschemeng.5b01460
Xu F Y, Zhang L Y, Cheng B, et al. ACS Sustainable Chem. Eng., 2018, 6(9):12291-12298
doi: 10.1021/acssuschemeng.8b02710
Wang C C, Zhan Y, Wang Z Y. Chemistry Select, 2018, 3(6):1713-1718
Lu D, Zhang G, K Wan Z. Appl. Surf. Sci., 2015, 358:223-230
doi: 10.1016/j.apsusc.2015.08.240
Cai J B, Wu X Q, Li S X, et al. ACS Sustainable Chem. Eng., 2016, 4(3):1581-1590
doi: 10.1021/acssuschemeng.5b01511
Mazierski P, Malankowska A, Kobylanski M, et al. ACS Catal., 2017, 7(4):2753-2764
doi: 10.1021/acscatal.7b00056
Zhang Y C, Li J, Xu H Y. Appl. Catal. B, 2012, 123-124:18-26
doi: 10.1016/j.apcatb.2012.04.018
Vinodgopal K, Kamat P V. Environ. Sci. Technol., 1995, 29(3):841-845
doi: 10.1021/es00003a037
Ong W J, Tan L L, Ng Y H, et al. Chem. Rev., 2016, 116(12):7159-7329
doi: 10.1021/acs.chemrev.6b00075
Low J X, Yu J G, Jaroniec M, et al. Adv. Mater., 2017, 29(20):1601694
doi: 10.1002/adma.201601694
Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2(7):1487-1491
doi: 10.1021/nn800251f
Zhang Y H, Tang Z R, Fu X Z, et al. ACS Nano, 2010, 4(12):7303-7314
doi: 10.1021/nn1024219
Liang Y Y, Wang H L, Casalongue H S, et al. Nano Res., 2010, 3(10):701-705
doi: 10.1007/s12274-010-0033-5
Dai G P, Yu J G, Liu G. J. Phys. Chem. C, 2011, 115(15):7339-7346
doi: 10.1021/jp200788n
Zhang Y, Xie Y H, Li J, et al. J. Sol-Gel Sci. Technol., 2014, 71(1):38-42
doi: 10.1007/s10971-014-3328-2
Xing X L, Zhu H H, Zhang M, et al. Catal. Sci. Technol., 2018, 8(14):3629-3637
doi: 10.1039/C8CY01035H
Tan B Y, Ye X Z, Li Y J, et al. Chem. Eur. J., 2018, 24:1-12
doi: 10.1002/chem.201705257
Aguirre M E, Zhou R X, Eugene A J, et al. Appl. Catal. B, 2017, 217:485-493
doi: 10.1016/j.apcatb.2017.05.058
Hao J G, Zhang S F, Ren F, et al. J. Colloid Interface. Sci., 2017, 508:419-425
doi: 10.1016/j.jcis.2017.08.065
Liu J J, Cheng B, Yu J G. Phys. Chem. Chem. Phys., 2016, 18(45):31175-31183
doi: 10.1039/C6CP06147H
Reli M, Huo P W, Sihor M, et al. J. Phys. Chem. A, 2016, 120(43):8564-8573
doi: 10.1021/acs.jpca.6b07236
Lu L Y, Wang G H, Zou M, et al. Appl. Surf. Sci., 2018, 441:1012-1023
doi: 10.1016/j.apsusc.2018.02.080
Zhang G H, Zhang T Y, Li B, et al. Appl. Surf. Sci., 2018, 433:963-974
doi: 10.1016/j.apsusc.2017.10.135
Wei H, McMaster W A, Tan J Z Y, et al. J. Phys. Chem. C, 2017, 121(40):22114-22122
doi: 10.1021/acs.jpcc.7b06493
Jiang G D, Yang X X, Wu Y, et al. Mol. Catal., 2017, 432:232-241
doi: 10.1016/j.mcat.2016.12.026
Tang Q, Meng X F, Wang Z Y, et al. Appl. Surf. Sci., 2018, 430:253-262
doi: 10.1016/j.apsusc.2017.07.288
Wang C L, Hu L M, Chai B, et al. Appl. Surf. Sci., 2018, 430:243-252
doi: 10.1016/j.apsusc.2017.08.036
Gu W L, Lu F X, Wang C, et al. ACS Appl. Mater. Interfaces, 2017, 9(34):28674-28684
doi: 10.1021/acsami.7b10010
Ma L N, Wang G H, Jiang C J, et al. Appl. Surf. Sci., 2018, 430:263-272
doi: 10.1016/j.apsusc.2017.07.282
Troppova I, Sihor M, Reli M, et al. Appl. Surf. Sci., 2018, 430:335-347
doi: 10.1016/j.apsusc.2017.06.299
Wang W, Fang J J, Shao S F, et al. Appl. Catal. B, 2017, 217:57-64
doi: 10.1016/j.apcatb.2017.05.037
Yan J Q, Wu H, Chen H, et al. Appl. Catal. B, 2016, 191:130-137
doi: 10.1016/j.apcatb.2016.03.026
Li J, Zhang M, Li Q Y, et al. Appl. Surf. Sci., 2017, 391:184-193
doi: 10.1016/j.apsusc.2016.06.145
Yu J G, Wang S H, Low J X, et al. Phys. Chem. Chem. Phys., 2013, 15(39):16883-16890
doi: 10.1039/c3cp53131g
Zheng X T, Yang L M, Li Y B, et al. Electrochim. Acta, 2019, 298:663-669
doi: 10.1016/j.electacta.2018.12.130
Li J, Zhang M, Li X, et al. Appl. Catal. B, 2017, 212:106-114
doi: 10.1016/j.apcatb.2017.04.061
Wang J, Wang G H, Wei X H, et al. Appl. Surf. Sci., 2018, 456:666-675
doi: 10.1016/j.apsusc.2018.06.182
Li Y H, Lv K L, Ho W K, et al. Appl. Catal. B, 2017, 202:611-619
doi: 10.1016/j.apcatb.2016.09.055
Li Q, Xia Y, Yang C, et al. Chem. Eng. J., 2018, 349:287-296
doi: 10.1016/j.cej.2018.05.094
Meng S G, Sun W T, Zhang S J, et al. J. Phys. Chem. C, 2018, 122(46):26326-26336
doi: 10.1021/acs.jpcc.8b07524
Zhang Z, Yates J T. Chem. Rev., 2012, 112(10):5520-5551
doi: 10.1021/cr3000626
Xu F Y, Zhang J J, Zhu B C, et al. Appl. Catal. B, 2018, 230:194-202
doi: 10.1016/j.apcatb.2018.02.042
Tersoff J. Phys. Rev. B:Condens. Matter, 1985, 32(10):6968-6971
doi: 10.1103/PhysRevB.32.6968
Low J X, Dai B Z, Tong T, et al. Adv. Mater., 2019, 31(6):1802981
doi: 10.1002/adma.201802981
Jiang W S, Zong X P, An L, et al. ACS Catal., 2018, 8(3):2209-2217
doi: 10.1021/acscatal.7b04323
Meng A Y, Zhu B C, Zhong B, et al. Appl. Surf. Sci., 2017, 422:518-527
doi: 10.1016/j.apsusc.2017.06.028
Hu Z Z, Quan H H, Chen Z, et al. Photochem. Photobiol. Sci., 2018, 17(1):51-59
doi: 10.1039/C7PP00256D
Qin N, Liu Y H, Wu W M, et al. Langmuir, 2015, 31(3):1203-1209
doi: 10.1021/la503731y
Zhang J, Zhou D D, Dong S S, et al. J. Hazard. Mater., 2019, 366:311-320
doi: 10.1016/j.jhazmat.2018.12.013
Han X G, Kuang Q, Jin M S, et al. J. Am. Chem. Soc., 2009, 131(9):3152-3153
doi: 10.1021/ja8092373
Duan Y Y, Liang L, Lv K L, et al. Appl. Surf. Sci., 2018, 456:817-826
doi: 10.1016/j.apsusc.2018.06.128
Xu Q L, Zhang L Y, Yu J G, et al. Mater. Today, 2018, 21(10):1042-1063
doi: 10.1016/j.mattod.2018.04.008
Tada H, Mitsui T, Kiyonaga T, et al. Nat. Mater., 2006, 5:782-786
doi: 10.1038/nmat1734
Wu F J, Li X, Liu W, et al. Appl. Surf. Sci., 2017, 405:60-70
doi: 10.1016/j.apsusc.2017.01.285
Liu X, Wang Z Q, Wu Y Z, et al. J. Colloid Interface Sci., 2019, 538:689-698
doi: 10.1016/j.jcis.2018.12.070
Zou Y J, Shi J W, Ma D D, et al. ChemCatChem, 2017, 9(19):3752-3761
doi: 10.1002/cctc.201700542
Zhao W, Liu J C, Deng Z Y, et al. Int. J. Hydrogen Energy, 2018, 43(39):18232-18241
doi: 10.1016/j.ijhydene.2018.08.026
Gao H Q, Zhang P, Hu J H, et al. Appl. Surf. Sci., 2017, 391:211-217
doi: 10.1016/j.apsusc.2016.06.170
Guo Y R, Xiao L M, Zhang M, et al. Appl. Surf. Sci., 2018, 440:432-439
doi: 10.1016/j.apsusc.2018.01.144
Bai S, Wang L L, Li Z Q, et al. Adv. Sci., 2017, 4(1):1600216
doi: 10.1002/advs.201600216
Kong L N, Zhang X T, Wang C H, et al. Appl. Surf. Sci., 2018, 448:288-296
doi: 10.1016/j.apsusc.2018.04.011
Wang G, Zhang L J, Yan B L, et al. ChemCatChem, 2019, 11(3):1057-1063
Li J Z, Zhong J B, Si Y J, et al. Solid State Sci., 2016, 52:106-111
doi: 10.1016/j.solidstatesciences.2015.12.020
Liao W J, Murugananthan M, Zhang Y R. Phys. Chem. Chem. Phys., 2015, 17(14):8877-8884
doi: 10.1039/C5CP00639B
Chen B H, Li P R, Zhang S S, et al. J. Colloid Interface Sci., 2016, 478:263-270
doi: 10.1016/j.jcis.2016.05.053
Chi C Y, Pan J Q, You M Z, et al. J. Phys. Chem. Solids, 2018, 114:173-178
doi: 10.1016/j.jpcs.2017.11.028
Wang F L, Wu Y L, Wang Y F, et al. Chem. Eng. J., 2019, 356:857-868
doi: 10.1016/j.cej.2018.09.092
Hu J H, Wang L J, Zhang P, et al. J. Power Sources, 2016, 328:28-36
doi: 10.1016/j.jpowsour.2016.08.001
Xu F Y, Xiao W, Cheng B, et al. Int. J. Hydrogen Energy, 2014, 39(28):15394-15402
doi: 10.1016/j.ijhydene.2014.07.166
Pan L, Zhang J W, Jia X, et al. Chin. J. Catal., 2017, 38(2):253-259
Gao H Q, Zhang P, Zhao J T, et al. Appl. Catal. B, 2017, 210:297-305
doi: 10.1016/j.apcatb.2017.03.050
Subha N, Mahalakshmi M, Myilsamy M, et al. Appl. Catal. A, 2018, 553:43-51
doi: 10.1016/j.apcata.2018.01.009
Zhao J T, Zhang P, Wang Z, et al. Sci. Rep., 2017, 7:16116
doi: 10.1038/s41598-017-12203-y
Wang D, Pan X Y, Wang G T, et al. RSC Adv., 2015, 5(28):22038-22043
doi: 10.1039/C4RA15215H
Yang G, Chen D M, Ding H, et al. Appl. Catal. B, 2017, 219:611-618
doi: 10.1016/j.apcatb.2017.08.016
Konstantinou I K, Albanis T A. Appl. Catal. B, 2004, 49(1):1-14
Chen C C, Ma W H, Zhao J C. Chem. Soc. Rev., 2010, 39(11):4206-4219
doi: 10.1039/b921692h
CUI Yan-Juan, WANG Yu-Xiong, WANG Hao, et al. Prog. Chem., 2016, 4:428-437
doi: 10.7536/PC151025
Yan L, Gu Z J, Zheng X P, et al. ACS Catal., 2017, 7(10):7043-7050
doi: 10.1021/acscatal.7b02170
Lin H, Huang C P, Li W, et al. Appl. Catal. B, 2006, 68(1/2):1-11
ZHANG Xiao-Dong, YANG Yang, LI Hong-Xin, et al. Prog. Chem., 2016, 10:1550-1559
Man X L, Wu R L, Lv H H, et al. J. Appl. Polym. Sci., 2015, 132(41):42627
Martin D J, Qiu K P, Shevlin S A, et al. Angew. Chem. Int. Ed., 2014, 53(35):9240-9245
doi: 10.1002/anie.201403375
Hisatomi T, Kubota J, Domen K. Chem. Soc. Rev., 2014, 43(22):7520-7535
doi: 10.1039/C3CS60378D
Yang Y, Niu S W, Han D D, et al. Adv. Energy Mater., 2017, 7(19):1700555
doi: 10.1002/aenm.201700555
Lu K Q, Xin X, Zhang N, et al. J. Mater. Chem. A, 2018, 6(11):4590-4604
doi: 10.1039/C8TA00728D
Li X, Shen R C, Ma S, et al. Appl. Surf. Sci., 2018, 430:53-107
doi: 10.1016/j.apsusc.2017.08.194
Cao S, Wang C J, Fu W F, et al. ChemSusChem, 2017, 10(22):4306-4323
doi: 10.1002/cssc.201701450
Naseri A, Samadi M, Pourjavadi A, et al. J. Mater. Chem. A, 2017, 5(45):23406-23433
doi: 10.1039/C7TA05131J
Wang F Y, Song L F, Zhang H C, et al. J. Electron. Mater., 2017, 46(8):4716-4724
doi: 10.1007/s11664-017-5491-z
Singh R, Dutta S. Fuel, 2018, 220:607-620
doi: 10.1016/j.fuel.2018.02.068
Chen X B, Liu L, Yu P Y, et al. Science, 2011, 331(6018):746-750
doi: 10.1126/science.1200448
Yan B L, Zhou J, Liang X Y, et al. Appl. Surf. Sci., 2017, 392:889-896
doi: 10.1016/j.apsusc.2016.09.117
Wei R B, Huang Z L, Gu G H, et al. Appl. Catal. B, 2018, 231:101-107
doi: 10.1016/j.apcatb.2018.03.014
Zhang X Q, Luo D, Zhang W Y, et al. Appl. Catal. B, 2018, 232:371-383
doi: 10.1016/j.apcatb.2018.03.070
Chen W X, Fang J S, Zhang Y W, et al. Nanoscale, 2018, 10(9):4463-4474
doi: 10.1039/C7NR08943K
Liu G, Niu P, Sun C H, et al. J. Am. Chem. Soc., 2010, 132(33):11642-11648
doi: 10.1021/ja103798k
Yang P J, Zhao J H, Qiao W, et al. Nanoscale, 2015, 7(45):18887-18890
doi: 10.1039/C5NR05570A
Takeda H, Cometto C, Ishitani O, et al. ACS Catal., 2017, 7(1):70-88
Sohn Y K, Huang W X, Taghipour F. Appl. Surf. Sci., 2017, 396:1696-1711
doi: 10.1016/j.apsusc.2016.11.240
Crake A. Mater. Sci. Technol., 2017, 33(15):1737-1749
doi: 10.1080/02670836.2017.1318250
Sun Z X, Wang H Q, Wu Z B A, et al. Catal. Today, 2018, 300:160-172
doi: 10.1016/j.cattod.2017.05.033
Low J X, Yu J G, Ho W K. J. Phys. Chem. Lett., 2015, 6(21):4244-4251
doi: 10.1021/acs.jpclett.5b01610
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
ehot- and hhot+ are excited electrons and holes, respectively; eCB- and hCB+ are electrons in conduction band and holes in valence band, respectively; eshallow-, hshallow+, edeep- and hdeep+: are electrons and holes in shallow or deep trap, respectively; etr- and htr+ are trapped electrons and holes, including etrshallow-, htrshallow+, etrdeep- and htrdeep+; rec is short for recombination