Template-Free Synthesis and Boosting Catalytic Activity in Styrene Epoxidation of Mesoporous Rod-like MnCo2O4
- Corresponding author: ZHOU Shi-Jian, zshijian@njtech.edu.cn KONG Yan, kongy36@njtech.edu.cn
Citation:
XU Man, SU Hang, SHAO Bo, WANG Yun, ZHOU Shi-Jian, KONG Yan. Template-Free Synthesis and Boosting Catalytic Activity in Styrene Epoxidation of Mesoporous Rod-like MnCo2O4[J]. Chinese Journal of Inorganic Chemistry,
;2019, 35(7): 1121-1129.
doi:
10.11862/CJIC.2019.155
Askarinejad A, Bagherzadeh M, Morsali A. Appl. Surf. Sci., 2010, 256(22):6678-6682
doi: 10.1016/j.apsusc.2010.04.069
Liu J Y, Chen T T, Jian P M, et al. J. Colloid Interface Sci., 2018, 526:295-301
doi: 10.1016/j.jcis.2018.05.001
Masunga N, Doyle B P, Carleschi E, et al. Appl. Catal. A, 2018, 559:175-186
doi: 10.1016/j.apcata.2018.04.027
Yang F, Zhou S J, Gao S Y, et al. Microporous Mesoporous Mater., 2017, 238:69-77
doi: 10.1016/j.micromeso.2016.03.007
Tong J H, Li W Y, Bo L L, et al. J. Catal., 2016, 344:474-481
doi: 10.1016/j.jcat.2016.10.003
Pal P, Pahari S K, Sinhamahapatra A, et al. RSC Adv., 2013, 3(27):10837-10847
doi: 10.1039/c3ra23485a
Choudhary V R, Jha R, Jana P. Catal. Commun., 2008, 10(2):205-207
doi: 10.1016/j.catcom.2008.08.020
Teng F, Chen M D, Li G Q, et al. Appl. Catal. B, 2011, 110:133-140
doi: 10.1016/j.apcatb.2011.08.035
Yao Y J, Cai Y M, Wu G D, et al. J. Hazard. Mater., 2015, 296:128-137
doi: 10.1016/j.jhazmat.2015.04.014
Yang F, Ding Y, Tang J J, et al. Mol. Catal., 2017, 435:144-155
doi: 10.1016/j.mcat.2017.03.034
Wang H Q, Gao S Y, Du J, et al. Appl. Catal. A, 2015, 504:228-237
doi: 10.1016/j.apcata.2014.12.040
Liu P, Hao Q L, Xia X F, et al. J. Phys. Chem. C, 2015, 119(16):8537-8546
doi: 10.1021/acs.jpcc.5b01315
Ma S C, Sun L Q, Cong L N, et al. J. Phys. Chem. C, 2013, 117:25890-25897
doi: 10.1021/jp407576q
Wang L J, Liu B, Ran S H, et al. J. Mater. Chem. A, 2013, 1:2139-2143
doi: 10.1039/C2TA00125J
Hu X N, Huang L, Zhang J P, et al. J. Mater. Chem. A, 2018, 6(7):2952-2963
doi: 10.1039/C7TA08000J
Qiu M Y, Zhan S H, Yu H B, et al. Nanoscale, 2015, 7(6):2568-2577
doi: 10.1039/C4NR06451H
Hu X L, Huang H H, Zhang J B, et al. RSC Adv., 2015, 5:99899-99906
doi: 10.1039/C5RA19789A
Zhang Y Q, Li L, Shi S J, et al. J. Power Sources, 2014, 256:200-205
doi: 10.1016/j.jpowsour.2014.01.073
Jia B R, Qin M L, Li S M, et al. ACS Appl. Mater. Interfaces, 2016, 8:15582-15590
doi: 10.1021/acsami.6b02768
Wang X H, Ni S B, Zhou G, et al. Mater. Lett., 2010, 64(13):1496-1498
doi: 10.1016/j.matlet.2010.04.002
Gao Y Q, Wang Z H, Wan J X, et al. J. Cryst. Growth, 2005, 279:415-419
doi: 10.1016/j.jcrysgro.2005.02.052
Wang X, Li Y D. Chem. Eur. J., 2003, 9(1):300-306
doi: 10.1002/chem.v9:1
Liu T, Liu J Y, Liu Q, et al. Nanoscale, 2015, 7(46):19714-19721
doi: 10.1039/C5NR05761B
Liu T, Liu J Y, Liu Q, et al. Sens. Actuators B, 2017, 250:111-120
doi: 10.1016/j.snb.2017.04.163
Xia X H, Tu J P, Zhang Y Q, et al. ACS Nano., 2012, 6:5531-5538
doi: 10.1021/nn301454q
Liu S M, Zhang W Q, Chen N, et al. ChemElectroChem, 2018, 5(16):2181-2185
doi: 10.1002/celc.201800426
Long H W, Liu T M, Zeng W, et al. Mater. Lett., 2018, 214:127-129
doi: 10.1016/j.matlet.2017.11.103
Shu Z, Huang W M, Hua Z L, et al. J. Mater. Chem. A, 2013, 1(35):10218-10227
doi: 10.1039/c3ta10971b
Zhang G J, Shen Z R, Liu M, et al. J. Phys. Chem. B, 2006, 110:25782-25790
doi: 10.1021/jp0648285
Liao F, Han X R, Zhang Y F, et al. Ceram. Int., 2018, 44:22622-22631
doi: 10.1016/j.ceramint.2018.09.038
Li G D, Xu L Q, Zhai Y J, et al. J. Mater. Chem. A, 2015, 3:14298-14306
doi: 10.1039/C5TA03145A
Kong X Z, Zhu T, Cheng F Y, et al. ACS Appl. Mater. Interfaces, 2018, 10(10):8730-8738
doi: 10.1021/acsami.7b19719
Xu J S, Sun Y D J, Lu M, et al. Acta Mater., 2018, 152:162-174
doi: 10.1016/j.actamat.2018.04.025
FENG Yan, WU Jian-Bo, ZHANG Xiao-Ling, et al. Chinese J. Inorg. Chem., 2019, 35(4):569-579
Yao L L, Zhang L L, Liu Y X, et al. CrystEngComm, 2016, 18:8887-8897
doi: 10.1039/C6CE01905F
Wang Y, Guo L M, Chen M Q, et al. Catal. Sci. Technol., 2018, 8(2):459-471
doi: 10.1039/C7CY01867C
Kuang L P, Ji F Z, Pan X X, et al. Chem. Eng. J., 2017, 315:491-499
doi: 10.1016/j.cej.2017.01.025
Masunga N, Tito G S, Meijboom R. Appl. Catal. A, 2018, 552:154-167
doi: 10.1016/j.apcata.2017.12.010
Liu J Y, Chen T T, Yan X D, et al. Catal. Commun., 2018, 109:71-75
doi: 10.1016/j.catcom.2018.02.023
Tang Q H, Zhang Q H, Wu H L, et al. J. Catal., 2005, 230(2):384-397
doi: 10.1016/j.jcat.2004.12.017
Sweta V C. Chin. J. Chem. Eng., 2018, 26(6):1300-1306
doi: 10.1016/j.cjche.2018.01.025
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
Juan CHEN , Guoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341
Xiangyang Ji , Yishuang Chen , Peng Zhang , Shaojia Song , Jian Liu , Weiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
Yu-Yao Li , Xiao-Hui Li , Zhi-Xuan An , Yang Chu , Xiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
Yue Wang , Wenli Hu , Binchao Shi , He Jia , Shilin Mei , Chang-Jiang Yao . Design of carbon@WS2 host with graham condenser-like structure for tunable sulfur loading of lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(6): 110065-. doi: 10.1016/j.cclet.2024.110065
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
Yu Pang , Min Wang , Ning-Hua Yang , Min Xue , Yong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
Teng-Yu Huang , Junliang Sun , De-Xian Wang , Qi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Yuwei Liu , Yihui Zhu , Weijian Duan , Yizhuo Yang , Haorui Tuo , Chunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347
Lanfang Wang , Jiangnan Lv , Yujia Li , Yanqing Hao , Wenjiao Liu , Hui Zhang , Xiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Hongyang Li , Yue Liu , Xiuwen Wang , Haijing Yan , Guimin Wang , Dongxu Wang , Yilong Wang , Shuo Yang , Yanqing Jiao . Morphology engineering and electronic structure remodeling of manganese-incorporated VN for boosting urea-assisted energy-saving hydrogen production. Chinese Chemical Letters, 2025, 36(6): 110042-. doi: 10.1016/j.cclet.2024.110042
Zhijie Zhang , Xun Li , Huiling Tang , Junhao Wu , Chunxia Yao , Kui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
(a) 20 mmol NH3·H2O, (b) 20 mmol NaOH, (c) 7.5 mmol (NH4)2SO4 and (d) 5 mmol (NH4)3PO4·3H2O
Reaction conditions: (a) 10 mL acetonitrile, 1 mmol styrene, 10 mg catalyst, 3 mmol TBHP, 80 ℃; (b) 10 mL acetonitrile, 1 mmol styrene, 10 mg catalyst, 3 mmol TBHP, 10 h; (c) 10 mL acetonitrile, 1 mmol styrene, 10 mg catalyst, 80 ℃, 10 h