Citation: GUO Yun-Ya, LIANG Guang-Hua, ZHANG Yan-Ting, HE Zu-Guang, LIANG Ya-Ning, LI Ning, LI Xiao-Feng, DOU Tao. Crystallization Mechanism and Performance in Methanol to Olefins Reaction of SAPO-18 Molecular Sieve[J]. Chinese Journal of Inorganic Chemistry, ;2019, 35(2): 185-193. doi: 10.11862/CJIC.2019.044 shu

Crystallization Mechanism and Performance in Methanol to Olefins Reaction of SAPO-18 Molecular Sieve

Figures(11)

  • SAPO-18 molecular sieves with the different crystallization times were prepared by hydrothermal method, which respectively taking the pseudo-boehmite, silica sol and phosphoric acid as the aluminum source, silicon source, phosphorus source, and N, N-diisopropylethylamine as the template. The samples at different crystallization times and its MTO (methanol to olefins) catalytic performance were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), NH3-TPD, 29Si MAS NMR, 27Al MAS NMR, FT-IR and other methods. The characterization results combined with the catalytic performance of MTO indicated that the growth process of SAPO-18 molecular sieve in the hydrothermal system could be divided into three stages:initial crystallization (≤ 2 h), rapid growth (6~12 h) and stable growth (1~3 d). In the early stage of crystallization, only a small amount of silicon enter the Al(PO)4 intermediates. The silicon atoms then enter the Al(PO)4 intermediates and SAPO-18 crystal, and replace phosphorus and aluminum atoms. SMⅡ mechanism is as the priority and SMⅢ mechanism is as the auxiliary pole in the fast growing period. The two substitution mechanisms of growth stabilization are in the opposite order.
  • 加载中
    1. [1]

      Tian P, Wei Y X, Ye M, et al. ACS Catal., 2015, 5(3):1922-1938  doi: 10.1021/acscatal.5b00007

    2. [2]

      Sattler J J, Ruizmartinez J, Santillanjimenez E, et al. Chem. Rev., 2014, 114(20):4708-4715

    3. [3]

      Chen J Q, Bozzano A, Glover B, et al. Catal. Today, 2005, 106(1):103-107
       

    4. [4]

      Chang C D. Catal. Rev. Sci. Eng., 1984, 26(3/4):323-345

    5. [5]

      Ono Y, Mori T. J. Chem. Soc., Faraday Trans. 1, 1981, 77(9): 2209-2221

    6. [6]

      Bjrgen M, Olsbye U, Petersen D, et al. J. Catal., 2004, 221(1):1-10
       

    7. [7]

      Wang S, Wei Z H, Chen Y Y, et al. ACS Catal., 2015, 5(2):1131-1144  doi: 10.1021/cs501232r

    8. [8]

      Zhong J W, Han J F, Wei Y X, et al. Catal. Sci. Technol., 2017, 7(21):4905-4923  doi: 10.1039/C7CY01466J

    9. [9]

      Nazari M, Behbahani R M, Moradi G, et al. J. Porous Mater., 2016, 23(4):1037-1046  doi: 10.1007/s10934-016-0161-8

    10. [10]

      Zhao D P, Zhang Y, Li Z, et al. RSC Adv., 2017, 7(2):939-946  doi: 10.1039/C6RA25080G

    11. [11]

      Chen J R, Li J Z, Wei Y X, et al. Catal. Commun., 2014, 46(5):36-40

    12. [12]

      Chen J S, Wright P A, Thomas J M, et al. J. Phys. Chem., 1994, 98(40):10216-10224  doi: 10.1021/j100091a042

    13. [13]

      Gayubo A G, Aguayo A T, Alonso A, et al. Catal. Today, 2005, 106(1/2/3/4):112-117
       

    14. [14]

      Fung S, Janssen M, Vaughn S, et al. US Patent, 6395674. 2002-05-28.

    15. [15]

      XU Ru-Ren, PANG Wen-Qin, HUO Qi-Sheng, et al. Molecular Sieve and Porous Material Chemistry, Beijing:Science Press, 2014:49-52

    16. [16]

      Nazari M, Moradi G, Behbahani R M, et al. J. Nat. Gas Sci. Eng., 2016, 29:337-344  doi: 10.1016/j.jngse.2016.01.022

    17. [17]

      Zhao D P, Zhang Y, Peng Y H, et al. Catal. Lett., 2016, 146(11):1-7

    18. [18]

      Sun Q M, Ma Y H, Wang N, et al. J. Mater. Chem. A, 2014, 2(42):17828-17839  doi: 10.1039/C4TA03419H

    19. [19]

      Tan J, Liu Z M, Bao X H, et al. Microporous Mesoporous Mater., 2002, 53(1):97-108

    20. [20]

      Gao B B, Fan D, Sun L J, et al. Microporous Mesoporous Mater., 2017, 248:204-213  doi: 10.1016/j.micromeso.2017.04.035

    21. [21]

      Chen J R, Li J Z, Yuan C Y, et al. Catal. Sci. Technol., 2015, 4(1):3268-3277
       

    22. [22]

      Álvaro-Muoz T, Márquez-álvarez C, Sastre E. Top. Catal., 2016, 59(2/3/4):278-291
       

    23. [23]

      Wei Y X, Zhang D Z, Xu L, et al. Top. Catal., 2008, 131(1/2/3/4):262-269
       

    24. [24]

      YANG De-Xing, WANG Peng-Fei, XU Hua-Sheng, et al. Chem. J. Chinese Universities, 2011, 32(4):939-945
       

    25. [25]

      Haw J F, Marcus D M. Top. Catal., 2005, 34(1/2/3/4):41-48
       

    26. [26]

      Li J Z, Wei Y X, Chen J R, et al. J. Am. Chem. Soc., 2012, 134(2):836-839  doi: 10.1021/ja209950x

    27. [27]

      Dai W L, Wang X, Wu G J, et al. ACS Catal., 2011, 1(4):292-299  doi: 10.1021/cs200016u

    28. [28]

      GUO Lei, ZHU Wei-Ping, LI Fei, et al. Industrial Catalysi, 2015, 23(5):384-389  doi: 10.3969/j.issn.1008-1143.2015.05.010

  • 加载中
    1. [1]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    4. [4]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    5. [5]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    8. [8]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    11. [11]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    12. [12]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    13. [13]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    14. [14]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    15. [15]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    16. [16]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    17. [17]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(13)
  • Abstract views(2099)
  • HTML views(243)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return