Controllable Fabrication of Mono-Shelled Hollow Sphere CaCO3 Microspheres via CO2 Bubbling Method:Potential Dye Carrier for Cell Bio-imaging
- Corresponding author: ZHANG Jian-Bin, tadzhang@pku.edu.cn
Citation:
LIU Jiang, SHA Feng, YANG Ting-Yu, MA Liang, ZHANG Jian-Bin. Controllable Fabrication of Mono-Shelled Hollow Sphere CaCO3 Microspheres via CO2 Bubbling Method:Potential Dye Carrier for Cell Bio-imaging[J]. Chinese Journal of Inorganic Chemistry,
;2018, 34(9): 1688-1700.
doi:
10.11862/CJIC.2018.220
Boyjoo Y, Pareek V K, Liu J. J. Mater. Chem. A, 2014, 2:14270-14288
doi: 10.1039/C4TA02070G
Kabalah-Amitai L, Mayzel B, Kauffmann Y, et al. Science, 2013, 340:454-457
doi: 10.1126/science.1232139
Volodkin D. Adv. Colloid Interface Sci., 2014, 207:306-324
doi: 10.1016/j.cis.2014.04.001
Chen C L, Qi J, Tao J, et al. Sci. Rep., 2014:6266
Kurapatia R, Raichur A M. J. Mater. Chem. B, 2013, 1:3175-3184
doi: 10.1039/c3tb20192a
Yan G W, Huang J H, Zhang J F, et al. Mater. Res. Bull., 2008, 43:2069-2077
doi: 10.1016/j.materresbull.2007.09.014
Fujihara K, Kotaki M, Ramakrishna S. Biomaterials, 2005, 6:4139-4147
Huang S, Chen J C, Hu C W, et al. Nanotechnology, 2009, 20:375102
doi: 10.1088/0957-4484/20/37/375102
Falini G, Albeck S, Weiner S, et al. Science, 1996, 271:67-69
doi: 10.1126/science.271.5245.67
DeOliveira D B, Laursen R A. J. Am. Chem. Soc., 1997, 119:10627-10631
doi: 10.1021/ja972270w
Mann S, Heywood B R, Rajam S, et al. Nature, 1988, 334:692-695
doi: 10.1038/334692a0
Aizenberg J, Black A J, Whitesides G M. J. Am. Chem. Soc., 1999, 121:4500-4509
doi: 10.1021/ja984254k
Hosoda N, Kato T. Chem. Mater., 2001, 13:688-693
doi: 10.1021/cm000817r
Ajikumar P K, Lakshminarayanan R, Valiyaveettil S. Cryst. Growth Des., 2004, 4:331-335
doi: 10.1021/cg034128e
Wei H, Shen Q, Zhao Y., et al. J. Cryst. Growth, 2005, 279:439-446
doi: 10.1016/j.jcrysgro.2005.02.064
Zhao Y, Li S, Yu L, et al. J. Cryst. Growth, 2011, 324:278-283
doi: 10.1016/j.jcrysgro.2011.03.052
Zhang Q, Ren L, Sheng Y, et al. Mater. Chem. Phys., 2010, 122:156-163
doi: 10.1016/j.matchemphys.2010.02.053
Li S, Yu L, Geng F, et al. J. Cryst. Growth, 2010, 312:1766-1773
doi: 10.1016/j.jcrysgro.2010.02.019
Cheng B, Lei M, Yu J, et al. Mater. Lett., 2004, 58:1565-1570
doi: 10.1016/j.matlet.2003.10.027
Chen Z, Nan Z. J. Colloid Interface Sci., 2011, 358:416-422
doi: 10.1016/j.jcis.2011.02.062
Yue L, Jin D, Shui M, et al. Solid State Sci., 2004, 6:1007-1012
doi: 10.1016/j.solidstatesciences.2004.04.011
Tong H, Ma W, Wang L, et al. Biomaterials, 2004, 25:3923-3929
doi: 10.1016/j.biomaterials.2003.10.038
Clfen H, Qi L. Chem. Eur. J., 2001, 7:106-116
doi: 10.1002/(ISSN)1521-3765
Lei M, Tang W H, Cao L Z, et al. J. Cryst. Growth, 2006, 294:358-366
doi: 10.1016/j.jcrysgro.2006.06.029
Su Y, Yang H, Shi W, et al. Colloids Surf. A, 2010, 355:158-162
doi: 10.1016/j.colsurfa.2009.12.002
Bastakoti B P, Guragain S, Yokoyama Y, et al. Langmuir, 2010, 27:379-384
Kirboga S, Öner M. Powder Technol., 2013, 249:95-104
doi: 10.1016/j.powtec.2013.07.015
Zhang F, Yang X, Tian F. Mater. Sci. Eng. C, 2009, 29:2530-2538
doi: 10.1016/j.msec.2009.08.001
Pan Y, Zhao X, Guo Y, et al. Mater. Lett., 2007, 61:2810-2813
doi: 10.1016/j.matlet.2006.10.034
Yang M, Jin X, Huang Q. Colloids Surf. A, 2011, 374:102-107
doi: 10.1016/j.colsurfa.2010.11.018
Yu J, Zhao X, Cheng B, et al. J. Solid State Chem., 2005, 178:861-867
doi: 10.1016/j.jssc.2005.01.002
Ji X, Li G, Huang X. Mater. Lett., 2008, 62:751-754
doi: 10.1016/j.matlet.2007.06.063
Kim S, Park C B. Langmuir, 2010, 26:14730-14736
doi: 10.1021/la1027509
Yan G W, Huang J H, Zhang J F, et al. Mater. Res. Bull., 2008, 43:2069-2077
doi: 10.1016/j.materresbull.2007.09.014
Wei W, Ma G H, Hu G, et al. J. Am. Chem. Soc., 2008, 130:15808-15810
doi: 10.1021/ja8039585
Han J T, Xu X, Cho K. J. Cryst. Growth, 2007, 308:110-116
doi: 10.1016/j.jcrysgro.2007.07.050
Xu A W, Yu Q, Dong W F, et al. Adv. Mater., 2005, 17:2217-2221
doi: 10.1002/(ISSN)1521-4095
Clfen H, Antonietti M. Langmuir, 1998, 14:582-589
doi: 10.1021/la970765t
Yu J, Yu J C, Zhang L, et al. Chem. Commun., 2004, 21:2414-2415
Yu S H, Clfen H, Hartmann J, et al. Adv. Funct. Mater., 2002, 12:541-545
doi: 10.1002/1616-3028(20020805)12:8<541::AID-ADFM541>3.0.CO;2-3
Qi L, Li J, Ma J. Adv. Mater., 2002, 14:300-303
doi: 10.1002/(ISSN)1521-4095
Deng S G, Cao J M, Feng J, et al. J. Phys. Chem. B, 2005, 109:11473-11477
doi: 10.1021/jp050290b
Shen Q, Wei H, Wang L, et al. J. Phys. Chem. B, 2005, 109:18342-18347
doi: 10.1021/jp052094a
Zhao L, Wang J. Colloids Surf., A, 2012, 393:139-143
doi: 10.1016/j.colsurfa.2011.11.012
Wang C, Xiao P, Zhao J, et al. Powder Technol., 2006, 170:31-35
doi: 10.1016/j.powtec.2006.08.016
Wang C, Liu Y, Bala H, et al. Colloids Surf. A, 2007, 297:179-182
doi: 10.1016/j.colsurfa.2006.10.045
Chen Y, Jia X, Zhao G, et al. Powder Technol., 2010, 200:144-148
doi: 10.1016/j.powtec.2010.02.017
Du L, Wang Y, Luo G. Particuology, 2013, 11:421-427
doi: 10.1016/j.partic.2012.07.009
Wu G, Wang Y, Zhu S, et al. Powder Technol., 2007, 172:82-88
doi: 10.1016/j.powtec.2006.10.031
Wang C, Sheng Y, Zhao X, et al. Mater. Lett., 2006, 60:854-857
doi: 10.1016/j.matlet.2005.10.035
Sun B C, Wang X M, Chen J M, et al. Chem. Eng. J., 2011, 168:731-736
doi: 10.1016/j.cej.2011.01.068
Wang C, Zhao J, Zhao X, et al. Powder Technol., 2006, 163:134-138
doi: 10.1016/j.powtec.2005.12.019
Xiang L, Wen Y, Wang Q, et al. Mater. Lett., 2006, 60:1719-1723
doi: 10.1016/j.matlet.2005.12.008
Zhang C, Zhang J, Feng X, et al. Colloids Surf. A, 2008, 324:167-170
Domingo C, García-Carmona J, Loste E, et al. J. Cryst. Growth, 2004, 271:268-273
doi: 10.1016/j.jcrysgro.2004.07.060
Chuajiw W, Takatori K, Lgarashi T, et al. J. Cryst. Growth, 2014, 386:119-127
doi: 10.1016/j.jcrysgro.2013.10.009
Kim Y Y, Carloni J D, Demarchi B, et al. Nat. Mater., 2016, 15:903-910
doi: 10.1038/nmat4631
Njegi-Dakula B, Falini G, Breevi L, et al. J. Colloid Interface Sci., 2010, 343:553-563
doi: 10.1016/j.jcis.2009.12.010
Malkaj P, Kanakis J, Dalas E. J. Cryst. Growth, 2004, 266:533-538
doi: 10.1016/j.jcrysgro.2004.02.114
Shivkumara C, Singh P, Gupta A, et al. Mater. Res. Bull., 2006, 41:1455-1460
doi: 10.1016/j.materresbull.2006.01.026
Hou W, Feng Q. Mater. Sci. Eng. C, 2006, 26:644-647
doi: 10.1016/j.msec.2005.09.098
Lai Y, Chen L, Bao W, et al. Cryst. Growth Des., 2015, 15:1194-1200
doi: 10.1021/cg5015847
Yao Y, Dong W, Zhu S, et al. Langmuir, 2009, 25:13238-13243
doi: 10.1021/la901913d
Wolf S E, Loges N, Mathiasch B, et al. Angew. Chem. Int. Ed., 2007, 46:5618-5623
doi: 10.1002/(ISSN)1521-3773
Jiang W, Pacella M S, Athanasiadou D, et al. Nat. Comm., 2017, 8:15066
doi: 10.1038/ncomms15066
Estevo B M, Miletto I, Marchese L, et al. Phys. Chem. Chem. Phys., 2016, 18:9042-9052
doi: 10.1039/C6CP00906A
Hsu C Y, Liu Y L. Chem. Eur. J., 2011, 17:5522-5525
doi: 10.1002/chem.v17.20
Chang S C, Chiu S J, Hsu C Y, et al. Polymer, 2012, 53:4399-4406
doi: 10.1016/j.polymer.2012.08.026
Murai K, Kurumisawa K, Nomura Y, et al. ChemMedChem, 2017, 12:1595-1599
doi: 10.1002/cmdc.201700358
Guo Y, Li H, Shi W, et al. J. Colloid Interface Sci., 2017, 502:59-66
doi: 10.1016/j.jcis.2017.04.085
Zhang M, Wang W T, Cui Y J, et al. ACS Biomater. Sci. Eng., 2018, 4:151-162
doi: 10.1021/acsbiomaterials.7b00531
MA Xiao-Yu, LIU Yong-Jia, ZHU Bang-Shang. Chinese J. Inorg. Chem., 2018, 34:917-924
doi: 10.11862/CJIC.2018.106
Gao X C, Cui R X, Ji G F, et al. Nanoscale, 2018, 10:6205-6211
doi: 10.1039/C7NR08892B
Gao X C, Zhai M J, Guan W H, et al. ACS Appl. Mater. Interfaces, 2017, 9:3455-3462
doi: 10.1021/acsami.6b14795
He W, Xie Y, Xing Q, et al. J. Luminescence, 2017, 192:902-909
doi: 10.1016/j.jlumin.2017.08.033
Scott J K, Smith G P. Science, 1990, 249:386-390
doi: 10.1126/science.1696028
Volodkin D V, Schmidt S, Fernandes P, et al. Adv. Funct. Mater., 2012, 22:1914-1922
doi: 10.1002/adfm.201103007
Kontoyannis C G, Vagenas N V. Analyst, 2000, 125:251-255
doi: 10.1039/a908609i
Xu A W, Antonietti M, Clfen H, et al. Adv. Funct. Mater., 2006, 16:903-908
doi: 10.1002/(ISSN)1616-3028
Xie A J, Yuan Z W, Shen Y. J. Cryst. Growth, 2005, 276:265-274
doi: 10.1016/j.jcrysgro.2004.11.376
Liu D, Yates M Z. Langmuir, 2006, 22:5566-5569
doi: 10.1021/la060612i
Wang A X, Chu D Q, Wang L M, et al. CrystEngComm, 2014, 16:5198-5205
doi: 10.1039/C4CE00171K
Fan Y W, Wang R Z. Adv. Mater., 2005, 17:2384-2388
doi: 10.1002/(ISSN)1521-4095
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
Guanyang Zeng , Xingqiang Liu , Liangqiao Wu , Zijie Meng , Debin Zeng , Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Linping Li , Junhui Su , Yanping Qiu , Yangqin Gao , Ning Li , Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Jiaxu Wang , Jinxie Zhang , Xiuping Wang , Jingying Wang , Lina Chen , Jiahui Cao , Wei Cao , Siyu Liang , Ping Luan , Ke Zheng , Xiao-Kun Ouyang , Li Gao , Xiaowen Ou , Fan Zhang , Meitong Ou , Lin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697
Zhixue Liu , Haiqi Chen , Lijuan Guo , Xinyao Sun , Zhi-Yuan Zhang , Junyi Chen , Ming Dong , Chunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
Ning Zhang , Mengjie Qin , Jiawen Zhu , Xuejing Lou , Xiao Tian , Wende Ma , Youmei Wang , Minghua Lu , Zongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
Mengxing Liu , Jing Liu , Hongxing Zhang , Jianan Tao , Peiwen Fan , Xin Lv , Wei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
(A)~(H): 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 g, respectively
(a)~(h): 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 g, respectively
(A)~(H): 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 g, respectively
(A)~(D): 10, 30, 50 and 70 mL·min-1, respectively
(a)~(d): 10, 30, 50 and 70 mL·min-1, respectively
(A)~(D): 10, 30, 50 and 70 mL·min-1, respectively
(A)~(D): 25, 35, 45 and 55 ℃, respectively
(a)~(d): 25, 35, 45 and 55 ℃, respectively
(A)~(D): 25, 35, 45 and 55 ℃, respectively
(A, D): bright field image; (B, E): fluorescence image excited at 375 nm; (C, F): merged image