Citation: WANG Zhi-Tao, Valentin Valtchev, FANG Qian-Rong, LI Xiu-Mei, PAN Ya-Ru. Syntheses, Crystal Structures and Theoretical Calculation of Three-Dimensional Supramolecular Zinc/Manganese Complex[J]. Chinese Journal of Inorganic Chemistry, ;2018, 34(3): 515-524. doi: 10.11862/CJIC.2018.038 shu

Syntheses, Crystal Structures and Theoretical Calculation of Three-Dimensional Supramolecular Zinc/Manganese Complex

  • Corresponding author: Valentin Valtchev, laowa2017@163.com
  • Received Date: 7 August 2017
    Revised Date: 13 November 2017

Figures(11)

  • Two new three-dimensional supramolecular complexes {[Zn2(pzdc)(L)2(H2O)]·H2O}n (1) and[Mn(μ2-O)(H2O)2(HL)]·NIPH (2) (H2pzdc=pyrazine-2, 3-dicarboxylic acid, H2NIPH=5-nitroisophthalic acid, HL=3-(2-pyridyl)pyrazole) have been hydrothermally synthesized and structurally characterized by elemental analysis, IR spectrum, UV spectrum, TG, fluorescence spectrum, single-crystal and powder X-ray diffraction. Complex 1 shows two-dimensional (2D) network, and complex 2 is zero-dimensional structure. They are further extended into a three-dimensional supramolecular network structure through hydrogen bonds and π-π interactions. Moreover, natural bond orbital (NBO) was analyzed by using the PBE0/LANL2DZ method built in Gaussian 09 program. The calculation results indicate the distinct covalent interaction between the coordinated atoms and Zn(Ⅱ), Mn(Ⅱ) ion, respectively.
  • 加载中
    1. [1]

      Uppadine L H, Lehn J M. Angew Chem. Int. Ed., 2004, 43: 240-243  doi: 10.1002/(ISSN)1521-3773

    2. [2]

      WANG Qing-Wei, WANG Ya-Nan, LI Xiu-Mei, et al. Chinese J. Inorg. Chem., 2014, 30(9):2219-2224
       

    3. [3]

      Hou L, Li D, Shi W J, et al. Inorg. Chem., 2005, 44:7825-7832  doi: 10.1021/ic050558d

    4. [4]

      Hines C C, Reichert W M, Griffin S T. J. Mol. Struct., 2006, 796:76-85  doi: 10.1016/j.molstruc.2006.03.098

    5. [5]

      Wang X L, Qin C, Wang E B, et al. Chem. Eur. J., 2006, 12: 2680-2691  doi: 10.1002/(ISSN)1521-3765

    6. [6]

      García-Couceiro U, Castillo O, Luque A, et al. Cryst. Growth Des., 2006, 6:1839-1847  doi: 10.1021/cg0601608

    7. [7]

      Hong M C, Zhao Y J, Su W P, et al. Angew. Chem. Int. Ed., 2000, 39:2468-2470  doi: 10.1002/(ISSN)1521-3773

    8. [8]

      Hong M C, Zhao Y Z, Su W P, et al. J. Am. Chem. Soc., 2000, 122:4819-4820  doi: 10.1021/ja000247w

    9. [9]

      Abrahams B F, Batten S R, Grannas M J, et al. Angew. Chem. Int. Ed., 1999, 38:1475-1477  doi: 10.1002/(ISSN)1521-3773

    10. [10]

      Bu X H, Chen W, Lu S L, et al. Angew. Chem. Int. Ed., 2001, 40:3201-3203  doi: 10.1002/(ISSN)1521-3773

    11. [11]

      Noro S, Kitaura R, Kondo M, et al. J. Am. Chem. Soc., 2002, 124:2568-2583  doi: 10.1021/ja0113192

    12. [12]

      Bu X H, Chen W, Du M, et al. Inorg. Chem., 2002, 41:437-439  doi: 10.1021/ic0107734

    13. [13]

      Kasai K, Aoyagi M, Fujita M. J. Am. Chem. Soc., 2000, 122: 2140-2141  doi: 10.1021/ja992553j

    14. [14]

      Sun L B, Li Y, Liang Z Q, et al. Dalton Trans., 2012, 41: 12790-12796  doi: 10.1039/c2dt31717f

    15. [15]

      Li X M, Pan Y R, Ji J Y, et al. J. Inorg. Organomet. Polym., 2014, 24:836-841  doi: 10.1007/s10904-014-0059-3

    16. [16]

      Pan Y R, Sun M, Li X M. Chin. J. Struct. Chem., 2015, 34: 576-584
       

    17. [17]

      Liu Y Y, Ma J F, Yang Y, et al. Inorg. Chem., 2007, 46: 3027-3037  doi: 10.1021/ic061575l

    18. [18]

      Sheldrick G M. SHELXS-97, Program for the Solution of Crystal Structure, University of Göttingen, Germany, 1997.

    19. [19]

      Sheldrick G M. SHELXL-97, Program for the Refinement of Crystal Structure, University of Göttingen, Germany, 1997.

    20. [20]

      Devereux M, Shea D O, Kellett A, et al. Inorg. Biochem., 2007, 101:881-892  doi: 10.1016/j.jinorgbio.2007.02.002

    21. [21]

      Farrugia L J, Wing X A. Windows Program for Crystal Structure Analysis, University of Glasgow, UK, 1988.

    22. [22]

      Fu Z Y, Wu X T, Dai J C, et al. Eur. J. Inorg. Chem., 2002, 2002:2730-2735  doi: 10.1002/1099-0682(200210)2002:10<2730::AID-EJIC2730>3.0.CO;2-G

    23. [23]

      Nakamoto K. Infrared Spectra and Raman Spectra of Inorganic and Coordination Compound. New York: Wiley, 1986.

    24. [24]

      Krische M J, Lehn J M. Struct. Bond., 2000, 96:3-29  doi: 10.1007/3-540-46591-X

    25. [25]

      Gilbert A, Baggott J. Essentials of Molecular Photochemistry. Oxford, Boston: Blackwell Scientific Publications, 1991.

    26. [26]

      Han Z B, He Y K, Ge C H, et al. Dalton Trans., 2007, 36: 3020-3024
       

    27. [27]

      Rendell D. Fluorescence and Phosphorescence. New York: John Willey & Sons, 1987.

    28. [28]

      Zheng S L, Chen X M. Aust. J. Chem., 2004, 57:703-712  doi: 10.1071/CH04008

    29. [29]

      Mohamed G G, El-Gamel N E A. Spectrochim. Acta Part A, 2004, 60:3141-3154  doi: 10.1016/j.saa.2004.01.035

    30. [30]

      Dong M N, He L L, Fan Y J, et al. Cryst. Growth Des., 2013, 13:3353-3364  doi: 10.1021/cg400033s

    31. [31]

      Glasson C R K, Meehan G V, Motti C A, et al. Dalton Trans., 2011, 40:10481-10490  doi: 10.1039/c1dt10667h

    32. [32]

      Pandey S, Das S S, Singh A K, et al. Dalton Trans., 2011, 40:10758-10768  doi: 10.1039/c1dt10661a

    33. [33]

      Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Rev. B.09, Gaussian Inc., Pittsburgh, 2009.

    34. [34]

      Parr R G, Yang W. Density Functional Theory of Atoms and Molecules. Oxford: Oxford University Press, 1989.

    35. [35]

      Ernzerhof M, Scuseria G E. J. Chem. Phys., 1999, 110:5029-5036  doi: 10.1063/1.478401

    36. [36]

      Adamo C, Barone V. J. Chem. Phys., 1999, 110:6158-6170  doi: 10.1063/1.478522

    37. [37]

      Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77:3865-3868  doi: 10.1103/PhysRevLett.77.3865

    38. [38]

      Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1997, 78:1396-1397
       

    39. [39]

      Dunning T H, Hay P J. Modern Theoretical Chemistry: Vol. 3. New York: Plenum, 1976:1-28

    40. [40]

      Wang L, Zhao J, Ni L, et al. J. Inorg. Gen. Chem., 2012, 638:224-230
       

    41. [41]

      LI Zhang-Peng, XING Yong-Heng, ZHANG Yuan-Hong, et al. Acta Phys.-Chim. Sin., 2009, 25(4):741-746
       

  • 加载中
    1. [1]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    2. [2]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    9. [9]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    10. [10]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    11. [11]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    12. [12]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    13. [13]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    14. [14]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    15. [15]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    16. [16]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    17. [17]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    18. [18]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    19. [19]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    20. [20]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

Metrics
  • PDF Downloads(2)
  • Abstract views(436)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return