Syntheses and Applications of UiO Series of MOFs
- Corresponding author: WANG Chong-Chen, chongchenwang@126.com
Citation:
WANG Fu-Xue, WANG Chong-Chen, WANG Peng, XING Bi-Cong. Syntheses and Applications of UiO Series of MOFs[J]. Chinese Journal of Inorganic Chemistry,
;2017, 33(5): 713-737.
doi:
10.11862/CJIC.2017.105
Furukawa H, Miller M A, Yaghi O M. J. Mater. Chem., 2007, 17(30):3197-3204
doi: 10.1039/b703608f
An J, Rosi N L. J. Am. Chem. Soc., 2010, 132(16):5578-5579
doi: 10.1021/ja1012992
And Y L, Yang R T. Langmuir, 2007, 23:12937
doi: 10.1021/la702466d
Mulder F M, Dingemans T J, Wagemaker M, et al. Chem. Phys., 2005, 317(2/3):113-118
Li J R, Yu J, Lu W, et al. Nat. Commun., 2013, 4(2):66-78
JIA Chao, YUAN Xian-Xia, MA Zi-Feng. Prog. Chem., 2009, 21(9):1954-1962
Rowsell J L, Yaghi O M. Angew. Chem. Int. Ed., 2005, 44(30):4670-4679
doi: 10.1002/(ISSN)1521-3773
Rosi N L, Eckert J, Eddaoudi M, et al. Science, 2003, 300(5622):1127-1129
doi: 10.1126/science.1083440
Wang Z, Zheng B, Liu H, et al. Cryst. Growth Des., 2013, 13(13):5001-5002
Mu L, Liu B, Liu H, et al. J. Mater. Chem., 2012, 22(24):12246-12252
doi: 10.1039/c2jm31541f
Ma S Q, Zhou H C. Chem. Commun., 2010, 46:44-53
doi: 10.1039/B916295J
Li S L, Xu Q. Energy Environ. Sci., 2013, 6:1656-1683
doi: 10.1039/c3ee40507a
ZHUANG Chang-Fu, LIU Jian-Lu, DAI Wen, et al. Prog. Chem., 2014, 26(2):277-292
QIU Jian-Hao, HE Ming, JIA Ming-Min, et al. Prog. Chem., 2016, 28(7):1016-1028
LIU Li-Li, ZHANG Xin, XU Chun-Ming. Prog. Chem., 2010, 22(11):2089-2098
LI Qing-Yuan, JI Sheng-Fu, HAO Zhi-Mou. Prog. Chem., 2012, 24(8):1506-1518
GUO Rui-Mei, BAI Jin-Quan, ZHANG Heng, et al. Prog. Chem., 2016, 28(2):232-243
doi: 10.7536/PC150804
Lee J Y, Farha O K, Roberts J, et al. Chem. Soc. Rev., 2009, 38:1450-1459
doi: 10.1039/b807080f
Wang C C, Du X D, Li J, et al. Appl. Catal. B, 2016, 193:198-216
doi: 10.1016/j.apcatb.2016.04.030
Wang C C, Li J R, Lü X L, et al. Energy Environ. Sci., 2014, 7(9):2831-2867
doi: 10.1039/C4EE01299B
Wang X S, Ma S, Sun D, Parkin S, et al. J. Am. Chem. Soc., 2006, 128(51):16474-16475
doi: 10.1021/ja066616r
Shultz A M, Farha O K, Hupp J T, et al. J. Am. Chem. Soc. 2009, 131(12):4024-4025
Horcajada P, Chalati T, Serre C, et al. Nat. Mater., 2010, 9(2):172-178
doi: 10.1038/nmat2608
Zheng H, Zhang Y, Liu L, et al. J. Am. Chem. Soc., 2016, 138(3):962-968
doi: 10.1021/jacs.5b11720
Wang X L, Luan J, Sui F F, et al. Cryst. Growth Des., 2013, 13(8):3561-3576
doi: 10.1021/cg400538c
Gole B, Bar A K, Mukherjee P S. Chem. Commun., 2011, 47(44):12137-12139
doi: 10.1039/c1cc15594f
Yan W, Wang L, Yang X K, et al. Dalton Trans., 2016, 45(11):4518-4521
doi: 10.1039/C5DT04844C
Hou Y N, Xing Y H, Bai F Y, et al. Spectrochim. Acta A, 2014, 123(7):267-272
Gomez-Aguirre L C, Pato-Doldan B, Mira J, et al. J. Am. Chem. Soc., 2015, 138(4):1122-1125
Wu Y P, Li D S, Duan Y P, et al. Inorg. Chem. Commun., 2013, 36:137-140
doi: 10.1016/j.inoche.2013.08.039
Chen Y Q, Liu S J, Li Y W, et al. Cryst. Growth Des., 2012, 12(12):5426-5431
WANG Rui-Ying, ZHANG Chao-Yan, WANG Shu-Ping, et al. Prog. Chem., 2015, 27(7):945-952
Wang C C, Ho Y S. Scientometrics, 2016, 109(1):481-513
doi: 10.1007/s11192-016-1986-2
XIE Sheng-Ming, YUAN Li-Ming. Prog. Chem., 2013, 25(10):1763-1770
TONG Mian-Man, ZHAO Xu-Dong, XIE Li-Ting, et al. Prog. Chem., 2012, 24(9):1646-1655
Gadipelli S, Guo Z X. Chem. Mater., 2014, 26(22):6333-6338
doi: 10.1021/cm502399q
Yoo Y, Varela-Guerrero V, Jeong H K. Langmuir, 2011, 27(6):2652-2657
doi: 10.1021/la104775d
Taylor J M, Vaidhyanathan R, Iremonger S S, et al. J. Am. Chem. Soc., 2012, 134(35):14338-14340
doi: 10.1021/ja306812r
Decoste J B. J. Mater. Chem., 2013, 1(18):5642-5650
Peterson G W, Decoste J B, Fatollahi-Fard F, et al. Ind. Eng. Chem. Res., 2013, 53(2):701-707
Kim J, Kim S N, Jang H G, et al. Appl. Catal. A:Gen., 2013, 453(6):175-180
Cavka J H, Jakobsen S, Olsbye U, et al. J. Am. Chem. Soc., 2008, 130(42):13850-13851
doi: 10.1021/ja8057953
Wang B, Lü X L, Feng D W, et al. J. Am. Chem. Soc., 2016, 138(19):6204-6216
doi: 10.1021/jacs.6b01663
Bai Y, Dou Y, Xie L H, et al. Chem. Soc. Rev., 2016, 47(22):2327-2367
Kandiah M, Nilsen M H, Usseglio S, et al. Chem. Mater., 2010, 22(24):6632-6640
doi: 10.1021/cm102601v
Morris W, Doonan C J, Yaghi O M. Inorg. Chem., 2011, 50(15):6853-6855
doi: 10.1021/ic200744y
Min K, Cahill J F, Su Y, et al. Chem. Sci., 2012, 3(1):126-130
doi: 10.1039/C1SC00394A
Li Y A, Zhao C W, Zhu N X, et al. Chem. Commun., 2015, 51(100):17672-17675
doi: 10.1039/C5CC07783D
Kutzscher C, Nickerl G, Senkovska I, et al. Chem. Mater., 2016, 28(8):2573-2580
doi: 10.1021/acs.chemmater.5b04575
HAN Yi-Tong, LIU Min, LI Ke-Yan, et al. Appl. Chem., 2016, 33(4):367-378
doi: 10.11944/j.issn.1000-0518.2016.04.150439
Klinowski J, Paz F A A, Silva P, et al. Dalton Trans., 2011, 40(23):321-330
Deshpande M S, Kumbhar A S, Puranik V G, et al. Cryst. Growth Des., 2006, 6(3):743-748
doi: 10.1021/cg0505719
Zeng Q, Wu D, Ma H, et al. CrystEngComm, 2006, 8(2):189-201
doi: 10.1039/b516212b
Tomar K, Rajak R, Sanda S, et al. Cryst. Growth Des., 2015, 15(6):2732-2741
doi: 10.1021/acs.cgd.5b00056
Pachfule P, Das R, Poddar P, et al. Cryst. Growth Des., 2011, 11(4):1215-1222
doi: 10.1021/cg101414x
Choi S, Kim T, Ji H, et al. J. Am. Chem. Soc., 2016, 138(43):14434-14440
doi: 10.1021/jacs.6b08821
Hausdorf S, Baitalow F, Seidel J, et al. J. Phys. Chem. A, 2007, 111(20):4259-4266
doi: 10.1021/jp0708291
Li H, Wei S, Zhao K, et al. Inorg. Chem., 2012, 51(17):9200-9207
doi: 10.1021/ic3002898
Crees R S, Cole M L, Hanton L R, et al. Inorg. Chem., 2010, 49(4):1712-1719
doi: 10.1021/ic9021118
Jhung S H, Lee J H, Yoon J W, et al. Adv. Mater., 2006, 19(1):121-124
Albuquerque G H, Herman G S. Cryst. Growth Des., 2017, 17(1):156-162
doi: 10.1021/acs.cgd.6b01398
Bux H, Liang F, Li Y, et al. J. Am. Chem. Soc., 2009, 131(44):16000-16001
doi: 10.1021/ja907359t
Liang W, Babarao R, D'Alessandro D M. Inorg. Chem., 2013, 52(22):12878-12880
doi: 10.1021/ic4024234
Sahu R K, Ray A K, Mishra T, et al. Cryst. Growth Des., 2008, 8(10):3754-3760
doi: 10.1021/cg8003883
Son W J. Chem. Commun., 2008, 47(47):6336-6338
Carson C G, Brown A J, Sholl D S, et al. Cryst. Growth Des., 2011, 11(10):4505-4510
doi: 10.1021/cg200728b
Qiu L G, Li Z Q, Wu Y, et al. Chem. Commun., 2008, 31(31):3642-3644
Jung D W, Yang D A, Kim J, et al. Dalton Trans., 2010, 39(11):2883-2887
doi: 10.1039/b925088c
Joaristi A M, Juanalcañiz J, Serracrespo P, et al. Cryst. Growth Des., 2012, 12(7):3489-3498
doi: 10.1021/cg300552w
Mueller U, Schubert M, Teich F, et al. J. Mater. Chem., 2006, 16:626-636
doi: 10.1039/B511962F
Li M, Dinc M. J. Am. Chem. Soc., 2011, 133(33):12926-12929
doi: 10.1021/ja2041546
Dario B, Marco C, Anna J, et al. Angew. Chem. Int. Ed., 2006, 45(1):142-146
doi: 10.1002/(ISSN)1521-3773
Julien P A, Uarevi K, Katsenis A D, et al. J. Am. Chem. Soc., 2016, 138(9):2929-2932
doi: 10.1021/jacs.5b13038
Klimakow M, Klobes P, Thünemann A F, et al. Chem. Mater., 2010, 22(18):5216-5221
doi: 10.1021/cm1012119
Chen Y, Li S, Pei X, et al. Angew. Chem. Int. Ed., 2016, 55(10):3419-3423
doi: 10.1002/anie.201511063
Ameloot R, Stappers L, Fransaer J, et al. Chem. Mater., 2009, 21(13):2580-2582
doi: 10.1021/cm900069f
Denny M S, Cohen S M. Angew. Chem. Int. Ed., 2015, 54(31):9029-9032
doi: 10.1002/anie.201504077
Ahrenholtz S R, Epley C C, Morris A J. J. Am. Chem. Soc., 2014, 136(6):2464-2472
doi: 10.1021/ja410684q
Zhu Q L, Xu Q. Chem. Soc. Rev., 2014, 43(16):5468-5512
doi: 10.1039/C3CS60472A
He L, Liu Y, Liu J, et al. Angew. Chem. Int. Ed., 2013, 52(13):3741-3745
doi: 10.1002/anie.201209903
López-Maya E, Montoro C, Rodríguez-Albelo L M, et al. Angew. Chem. Int. Ed., 2015, 54(23):6790-6794
doi: 10.1002/anie.201502094
Petit C, Mendoza B, Bandosz T J. Langmuir, 2010, 26(19):15302-15309
doi: 10.1021/la1021092
Zhao Y, Seredych M, Zhong Q, et al. ACS Appl. Mater. Interfaces, 2013, 5(11):4951-4959
doi: 10.1021/am4006989
Shearer G C, Forselv S, Chavan S, et al. Top. Catal., 2013, 56(9/10):770-782
Takaaki T, Shuhei F, Yohei T, et al. Angew. Chem. Int. Ed., 2009, 48(26):4739-4743
doi: 10.1002/anie.v48:26
Schaate A, Roy P, Godt A, et al. Chem. Eur. J., 2011, 17(24):6643-6651
Larabi C, Quadrelli E A. Eur. J. Inorg. Chem., 2012, 2012(18):3014-3022
doi: 10.1002/ejic.201200033
Lu C M, Liu J, Xiao K, et al. Chem. Eng. J., 2010, 156(2):465-470
Ni Z, Masel R I. J. Am. Chem. Soc., 2006, 128(38):12394-12395
doi: 10.1021/ja0635231
Babu R, Roshan R, Kathalikkattil A C, et al. ACS Appl. Mater. Interfaces, 2016, 8(49):33723-33731
doi: 10.1021/acsami.6b12458
Li Y, Liu Y, Gao W, et al. CrystEngComm, 2014, 16(30):7037-7042
doi: 10.1039/C4CE00526K
Antonio D L H, Angel D O, Andres M. Chem. Soc. Rev., 2005, 34(21):164-178
Taddei M, Dau P V, Cohen S M, et al. Dalton Trans., 2015, 44(31):14019-14026
doi: 10.1039/C5DT01838B
Katsenis A D, Puškaric A, Štrukil V, et al. Nat. Commun., 2015, 6:6662(8 pages)
Tomislav F. Encyclopedia of Inorganic and Bioinorganic Chemistry. New York:John Wiley and Sons, Inc., 2014.
Crawford D E, Casaban J. Adv. Mater., 2016, 28(27):5747-5754
doi: 10.1002/adma.v28.27
Uarevi K, Wang T C, Moon S Y, et al. Chem. Commun., 2015, 52(10):2133-2136
Batten M P, Rubio-Martinez M, Hadley T, et al. Curr. Opin. Chem. Eng., 2015, 8:55-59
doi: 10.1016/j.coche.2015.02.001
Taddei M, Steitz D A, Van Bokhoven J A, et al. Chem. Eur. J., 2016, 22(10):3245-3249
Rubiomartinez M, Batten M P, Polyzos A, et al. Sci. Rep., 2014, 4:5443
Campagnol N, Vanassche T, Boudewijns T, et al. J. Mater. Chem. A, 2013, 1(19):5827-5830
doi: 10.1039/c3ta10419b
Shekhah O, Liu J, Fischer R A, et al. Chem. Soc. Rev., 2011, 40:1081-1106
doi: 10.1039/c0cs00147c
Shah M, Mccarthy M C, Sachdeva S, et al. Ind. Eng. Chem. Res., 2012, 51(5):2179-2199
doi: 10.1021/ie202038m
Miyamoto M, Kohmura S, Iwatsuka H, et al. CrystEngComm, 2015, 17(18):3422-3425
doi: 10.1039/C5CE00462D
Fei H, Pullen S, Wagner A, et al. Chem. Commun., 2014, 51(1):66-69
Stassen I, Styles M, Assche T V, et al. Chem. Mater., 2015, 27(5):76-78
Nguyen H G T, Mao L, Peters A W, et al. Catal. Sci. Technol., 2015, 5(9):4444-4451
doi: 10.1039/C5CY00825E
Shen L, Luo M, Liu Y, et al. Appl. Catal. B, 2015, 166-167:445-453
doi: 10.1016/j.apcatb.2014.11.056
Tan Y, Zhang W, Gao Y, et al. RSC Adv., 2015, 5(23):17601-17605
doi: 10.1039/C4RA11896K
Zhang W, Lu G, Cui C, et al. Adv. Mater., 2014, 26(24):4056-4060
doi: 10.1002/adma.v26.24
Ren J, Segakweng T, Langmi H, et al. Int. J. Mater. Res., 2014, 105(5):516-519
doi: 10.3139/146.111047
Katz M J, Brown Z J, Colón Y J, et al. Chem. Commun., 2013, 49(82):9449-9451
doi: 10.1039/c3cc46105j
Rechac V L, Cirujano F G, Corma A. Eur. J. Inorg. Chem., 2016, 2016(27):4512-4516
doi: 10.1002/ejic.201600372
Sun D, Liu W, Qiu M, et al. Chem. Commun., 2014, 51(11):2056-2059
Panchenko V N, Matrosova M M, Jeon J, et al. J. Catal., 2014, 316(3):251-259
Žunkovi E, Mazaj M, Mali G, et al. J. Solid State Chem., 2015, 225:209-215
doi: 10.1016/j.jssc.2014.12.033
Shen L, Liang R, Luo M, et al. Phys. Chem. Chem. Phys., 2014, 17(1):117-121
Luan Y, Qi Y, Gao H, et al. J. Mater. Chem. A, 2014, 2(48):20588-20596
doi: 10.1039/C4TA04311A
Huang Y, Qin W, Li Z, et al. Dalton Trans., 2012, 41(31):9283-9285
doi: 10.1039/c2dt30950e
Shen L, Liang S, Wu W, et al. J. Mater. Chem., 2013, 1(37):11473-11482
Lin R, Shen L, Ren Z, et al. Chem. Commun., 2014, 50(62):8533-8535
doi: 10.1039/C4CC01776E
Leus K, Concepcion P, Vandichel M, et al. RSC Adv., 2015, 5(34):22334-22342
Yang X L, Qiao L M, Dai W L. Microporous Mesoporous Mater., 2015, 211:73-81
doi: 10.1016/j.micromeso.2015.02.035
DeCoste J B, Peterson G W, Jasuja H, et al. J. Mater. Chem. A, 2013, 1(18):5642-5650
doi: 10.1039/c3ta10662d
Ko N, Hong J, Sung S, et al. Dalton Trans., 2015, 44(5):2047-2051
doi: 10.1039/C4DT02582B
Peterson G W, Moon S Y, Wagner G W, et al. Inorg. Chem., 2015, 54(20):9684-9686
doi: 10.1021/acs.inorgchem.5b01867
Li Y A, Yang S, Liu Q K, et al. Chem. Commun., 2016, 52(39):6517-6520
doi: 10.1039/C6CC01194B
Yang Q, Guillerm V, Ragon F, et al. Chem. Commun., 2012, 48(79):9831-9833
doi: 10.1039/c2cc34714h
Piscopo C G, Polyzoidis A, Schwarzer M, et al. Microporous Mesoporous Mater., 2015, 208:30-35
doi: 10.1016/j.micromeso.2015.01.032
Aguilera-Sigalat J, Bradshaw D. Chem. Commun., 2014, 50:4711-4713
doi: 10.1039/c4cc00659c
Valenzano L, Civalleri B, Chavan S, et al. Chem. Mater., 2011, 23(7):1700-1718
doi: 10.1021/cm1022882
Yot P G, Yang K, Ragon F, et al. Dalton Trans., 2015, 45(2):226-227
Mondloch J E, Katz M J, Planas N, et al. Chem. Commun., 2014, 50(64):8944-8946
doi: 10.1039/C4CC02401J
Wu R, Qian X, Zhou K, et al. J. Mater. Chem. A, 2013, 1(45):14294-14299
doi: 10.1039/c3ta13114a
Zhang X, Han Q, Ding M. RSC Adv., 2015, 5(2):1043-1050
doi: 10.1039/C4RA12263A
Pinto M L, Dias S, Pires J. ACS Appl. Mater. Interfaces, 2013, 5(7):2360-2363
doi: 10.1021/am303089g
Cao Y, Zhao Y, Lü Z, et al. J. Ind. Eng. Chem., 2015, 27(25):102-107
Manna K, Ji P, Lin Z, et al. Nat. Commun., 2016, 7:12610-12621
Cheng P, Hu Y H. Int. J. Energy Res., 2016, 40(6):846-852
doi: 10.1002/er.v40.6
Shearier E, Cheng P, Bao J, et al. RSC Adv., 2016, 6(5):4128-4135
doi: 10.1039/C5RA24336J
Vermoortele F, Bueken B, Le B G, et al. J. Am. Chem. Soc., 2013, 135(31):11465-11468
doi: 10.1021/ja405078u
Cai G R, Jiang H L. Angew. Chem. Int. Ed., 2017, 129:578-582
doi: 10.1002/ange.201610914
Wu H, Yong S C, Krungleviciute V, et al. J. Am. Chem. Soc., 2013, 135(28):10525-10532
doi: 10.1021/ja404514r
Trickett C A, Gagnon K J, Lee S, et al. Angew. Chem. Int. Ed., 2015, 127:11314-11319
doi: 10.1002/ange.201505461
Ranocchiari M, Ja V B. Phys. Chem. Chem. Phys., 2011, 13(14):6388-6396
doi: 10.1039/c0cp02394a
Farrusseng D, Aguado S, Pinel C. Angew. Chem. Int. Ed., 2009, 121(41):7638-7649
doi: 10.1002/ange.v121:41
Kim S N, Lee Y R, Hong S H, et al. Catal. Today, 2015, 245:54-60
doi: 10.1016/j.cattod.2014.05.041
Chung Y M, Kim H Y, Ahn W S. Catal. Lett., 2014, 144(5):817-824
doi: 10.1007/s10562-014-1242-4
Hinde C S, Webb W R, Chew B K, et al. Chem. Commun., 2016, 52(39):6557-6560
doi: 10.1039/C6CC02169G
DAI Tian-Lin, ZHANG Yan-Mei, CHU Gang, et al. Chinese J. Inorg. Chem., 2016, 32(4):609-616
Yi X C, Xi F G, Qi Y, et al. RSC Adv., 2014, 5(2):893-900
Hester P, Xu S, Liang W, et al. J. Catal., 2016, 340:85-94
doi: 10.1016/j.jcat.2016.05.003
Silva C G, Corma A, García H. J. Mater. Chem., 2010, 20(16):3141-3156
doi: 10.1039/b924937k
Wang J L, Wang C, Lin W. ACS Catal., 2012, 2(2):2630-2640
Zeng L, Guo X, He C, et al. ACS Catal., 2016, 6(11):7935-7947
doi: 10.1021/acscatal.6b02228
Wang C, Xie Z, Dekrafft K E, et al. J. Am. Chem. Soc., 2011, 133(34):13445-13454
doi: 10.1021/ja203564w
Deenadayalan M S, Sharma N, Verma P K, et al. Inorg. Chem., 2016, 55(11):5320-5327
doi: 10.1021/acs.inorgchem.6b00296
Dhakshinamoorthy A, Asiri A M, García H. Angew. Chem. Int. Ed., 2016, 55(18):5414-5445
doi: 10.1002/anie.201505581
Zhang T, Lin W. Chem. Soc. Rev., 2014, 43(16):5982-5993
doi: 10.1039/C4CS00103F
Wang C C, Zhang Y Q, Li J, et al. J. Mol. Struct., 2015, 1083:127-136
doi: 10.1016/j.molstruc.2014.11.036
Sun D, Fu D Y, Liu W, et al. Chem. Eur. J., 2013, 19(42):14279-14285
doi: 10.1002/chem.201301728
Lee Y, Kim S, Kang J K, et al. Chem. Commun., 2015, 51(26):5735-5738
doi: 10.1039/C5CC00686D
Shen L, Liang S, Wu W, et al. Dalton Trans., 2013, 42(37):13649-13657
doi: 10.1039/c3dt51479j
Fujishima A, Rao T N, Tryk D A. J. Photochem. Photobiol. C, 2000, 1(1):1-21
doi: 10.1016/S1389-5567(00)00002-2
Wang L, Li X, Wei T, et al. J. Hazard. Mater., 2013, 244-245(2):681-688
Shen L, Wu W, Liang R, et al. Nanoscale, 2013, 5(19):9374-9382
doi: 10.1039/c3nr03153e
Toyao T, Saito M, Yu H, et al. Catal. Sci. Technol., 2014, 4(3):625-628
doi: 10.1039/c3cy00917c
Pu S, Xu L, Sun L, et al. Inorg. Chem. Commun., 2015, 52:50-52
doi: 10.1016/j.inoche.2014.12.015
Li S, Wang X, He Q, et al. Chin. J. Catal., 2016, 37(3):367-377
doi: 10.1016/S1872-2067(15)61033-6
ZHOU Xin, FENG Tao, GAO Shu-Tao, et al. Chinese J. Inorg. Chem., 2016, 32(5):769-776
LIU Fei-Yang, PENG Zhen, WANG Jie-Yi, et al. Chin. J. Environ. Eng., 2016, 10(10):5682-5688
doi: 10.12030/j.cjee.201505169
Cláudia G S, Ignacio L, Avelino C, et al. Chem. Eur. J., 2010, 16(36):11133-11138
Zhou J J, Wang R, Liu X L, et al. Appl. Surf. Sci., 2015, 346(4):278-283
Bu Y, Li F, Zhang Y, et al. RSC Adv., 2016, 6(46):40560-40566
doi: 10.1039/C6RA05522B
Yuan Y P, Yin L S, Cao S W, et al. Appl. Catal. B, 2015, 168-169:572-576
doi: 10.1016/j.apcatb.2014.11.007
Youngblood W J, Lee S H, Maeda K, et al. Acc. Chem. Res., 2009, 41(12):1966-1973
Luo W, Li Z, Yu T, et al. J. Phys. Chem., C, 2012, 116(8):5076-5081
doi: 10.1021/jp210207q
Wang Y, Hong J, Zhang W, et al. Catal. Sci. Technol., 2013, 3(7):1703-1711
doi: 10.1039/c3cy20836b
Liu M, Li F, Sun Z, et al. Chem. Commun., 2014, 50(75):11004-11007
doi: 10.1039/C4CC04653F
Li H, Eddaoudi M, O'Keeffe M, et al. Nature, 1999, 402(6757):276-279
Yaghi O M, Li G, Li H. Nature, 1995, 378(6558):703-706
doi: 10.1038/378703a0
Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38(29):1477-1504
Biswas S, Voort P V D. Eur. J. Inorg. Chem., 2013, 2013(12):2154-2160
doi: 10.1002/ejic.201201228
Chevreau H, Liang W, Kearley G J, et al. J. Phys. Chem. C, 2015, 119(13):6980-6987
doi: 10.1021/jp512501k
Hu Z, Zhang K, Zhang M, et al. ChemSusChem, 2014, 7(10):2791-2955
doi: 10.1002/cssc.201402378
Li L J, Liao P Q, He C T, et al. J. Mater. Chem. A, 2015, 3:21849-21855
doi: 10.1039/C5TA05997F
Hu Z, Khurana M, Yong H S, et al. Chem. Eng. Sci., 2015, 124(1):61-69
Smith S J, Ladewig B P, Hill A J, et al. Sci. Rep., 2015, 5:7823-7823
doi: 10.1038/srep07823
Ethiraj J, Albanese E, Civalleri B, et al. ChemSusChem, 2014, 7(12):3382-3388
doi: 10.1002/cssc.v7.12
Arrua R D, Peristyy A, Nesterenko P N, et al. Analyst, 2017, 142:517-524
doi: 10.1039/C6AN02344D
Zhao Y, Wu H, Emge T J, et al. Chem. Eur. J., 2011, 17(18):5101-5109
Liang W B, Campbell J C, Florence R, et al. Dalton Trans., 2016, 45:4496-4500
doi: 10.1039/C6DT00189K
Abid H R, Ang H M, Wang S. Nanoscale, 2012, 4(10):3089-3094
doi: 10.1039/c2nr30244f
Hu Z G, Nalaparaju A, Peng Y W, et al. Inorg. Chem., 2016, 55(3):1134-1141
doi: 10.1021/acs.inorgchem.5b02312
Ren J, Langmi H W, North B C, et al. Int. J. Hydrogen Energy, 2014, 39(2):890-895
doi: 10.1016/j.ijhydene.2013.10.087
Abid H R, Tian H, Ang H M, et al. Chem. Eng. J., 2012, 187(2):415-420
Ren J, Musyoka N M, Langmi H W, et al. Int. J. Hydrogen Energy, 2014, 39(27):14912-14917
doi: 10.1016/j.ijhydene.2014.07.056
Ramsahye N A, Gao J, Jobic H, et al. J. Phys. Chem. C, 2014, 118(47):27470-27482
doi: 10.1021/jp509672c
He Q Q, Chen Q, Lü M M, et al. Chin. J. Chem. Eng., 2014, 22(z1):1285-1290
Zhao X, Liu D, Huang H, et al. Microporous Mesoporous Mater., 2014, 185(185):72-78
Seo Y S, Khan N A, Jhung S H. Chem. Eng. J., 2015, 270:22-27
REN Tian-Hao, YANG Zhi-Lin, GUO Lin, et al. J. Environ. Sci., 2016, 37(6):2202-2210
Peterson G W, Mahle J J, Decoste J B, et al. Angew. Chem. Int. Ed., 2016, 55(21):6235-6238
doi: 10.1002/anie.201601782
Decoste J B, Demasky T J, Katz M J, et al. New J. Chem., 2015, 39(4):2396-2399
doi: 10.1039/C4NJ02093F
Zhu X, Li B, Yang J, et al. ACS Appl. Mater. Interfaces, 2015, 7(1):223-231
doi: 10.1021/am5059074
Liu X, Demir N K, Wu Z, et al. J. Am. Chem. Soc., 2015, 137(22):6999-7002
doi: 10.1021/jacs.5b02276
Vitillo J G, Regli L, Chavan S, et al. J. Am. Chem. Soc., 2008, 130(26):8386-8396
doi: 10.1021/ja8007159
Rallapalli P B S, Raj M C, Patil D V, et al. Int. J. Energy Res., 2013, 37(7):746-753
doi: 10.1002/er.v37.7
Yang S J, Choi J Y, Chae H K, et al. Chem. Mater., 2009, 21(9):1893-1897
doi: 10.1021/cm803502y
Férey G, Mellot-Draznieks C, Serre C, et al. Science, 2005, 309(5743):2040-2042
doi: 10.1126/science.1116275
Hedegaard M J, Arvin E, Corfitzen C B, et al. Sci. Total Environ., 2014, 499:257-264
doi: 10.1016/j.scitotenv.2014.08.052
Ignatowicz K. J. Hazard. Mater., 2009, 169(1/2/3):953-957
Shahat A, Hassan H M A, Azzazy H M E. Anal. Chim. Acta, 2013, 793:90-98
doi: 10.1016/j.aca.2013.07.012
Greim H. The MAK Collection for Occupational Health and Safety. New York:Wiley, 1999:12
Orellanatavra C, Baxter E F, Tian T, et al. Chem. Commun., 2015, 51(73):13878-13881
doi: 10.1039/C5CC05237H
Tai S, Zhang W, Zhang J, et al. Microporous Mesoporous Mater., 2016, 220:148-154
doi: 10.1016/j.micromeso.2015.08.037
Sun C Y, Qin C, Wang C G, et al. Adv. Mater., 2011, 23(47):5629-5632
doi: 10.1002/adma.v23.47
Nazari M, Rubio-Martinez M, Tobias G, et al. Adv. Funct. Mater., 2016, 26(19):3244-3249
doi: 10.1002/adfm.v26.19
Zhang H T, Zhang J W, Huang G, et al. Chem. Commun., 2014, 50(81):12069-12072
doi: 10.1039/C4CC05571C
Liu S, Yue Z, Liu Y. Dalton Trans., 2015, 44(29):12976-12980
doi: 10.1039/C5DT01667C
Gao Y, Wu J, Zhang W, et al. Mater. Lett., 2014, 128(10):208-211
Lee D Y, Yoon S Y, Shrestha N K, et al. Microporous Mesoporous Mater., 2012, 153(3):163-165
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
(a) secondary building unit; (b) octahedral cage; (c) tetrahedral cage; (d) UiO-66; (e) UiO-67; (f) UiO-68
Inset: photographs of UiO-66 (ⅰ) and UiO-66(NH2) (ⅱ); Reaction conditions for (d): 20 mg photocatalyst, 40 mL of 0.01‰ Cr (Ⅵ), 100 μL methanol, reaction temperature 30 ℃, pH=2
Reaction conditions for (e): 20 mg photocatalyst, 40 mL of Cr (Ⅵ) (0.01‰), 30 ℃, 60 min
(d) Red: Zr signal, light blue: Al signal; In (f), the order of water and hydrated ion diameters (in nm) is H2O (0.28) < Cl- (0.66)~K+ (0.66) < Na+(0.72) < Ca2+(0.82) < Mg2+(0.86) < Al3+(0.95)