Facile Synthesis and Photocatalytic Activity for Hydrogen Evolution of Ag2O/TiO2
- Corresponding author: CUI Xiao-Li, xiaolicui@fudan.edu.cn
Citation:
ZHAO Zhi-Hao, Lee Jordan, CHEN Yang, CUI Xiao-Li. Facile Synthesis and Photocatalytic Activity for Hydrogen Evolution of Ag2O/TiO2[J]. Chinese Journal of Inorganic Chemistry,
;2017, 33(5): 738-744.
doi:
10.11862/CJIC.2017.098
Hoffmann M, Choi W, Bahnemann D. Chem. Rev., 1995, 95(1):69-96
doi: 10.1021/cr00033a004
Linsebigler A, Lu G, Yates J. Chem. Rev., 1995, 95(3):735-758
doi: 10.1021/cr00035a013
Carp O, Huisman C, Reller A. Prog. Solid State Chem., 2004, 32(1/2):33-177
Epifani M, Giannini C, Tapfer L, et al. J. Am. Ceram. Soc., 2000, 83(10):2385-2393
Huang L, Peng F, Wang H, et al. Catal. Commun., 2009, 10(14):1839-1843
doi: 10.1016/j.catcom.2009.06.011
Zhou J, Zhang Y, Zhao X, et al. Ind. Eng. Chem. Res., 2006, 45(10):3503-3511
doi: 10.1021/ie051098z
Grandcolas M, Du K, Bosc F, et al. Catal. Lett., 2008, 123(1/2):65-71
Binitha N, Yaakob Z, Reshmi M, et al. Catal. Today, 2009, 147:S76-S80
doi: 10.1016/j.cattod.2009.07.014
Lü X, Gao F, Yang Y, et al. Ind. Eng. Chem. Res., 2015, 55(1):107-115
Cheng B, Le Y, Yu J. J. Hazard. Mater., 2010, 177(1):971-977
Zhou W, Hong L, Wang J, et al. ACS Appl. Mater. Interface, 2010, 2(8):2385-2392
doi: 10.1021/am100394x
Wang Y, Liu L, Xu L, et al. Nanoscale, 2014, 6(12):6790-6797
doi: 10.1039/c3nr06724f
Ma X, Chen Y, Li H, et al. Mater. Res. Bull., 2015, 66:51-58
doi: 10.1016/j.materresbull.2015.02.005
Zhang X, Sun Y, Cui X, et al. Int. J. Hydrogen Energy, 2012, 37(2):1356-1365
doi: 10.1016/j.ijhydene.2011.09.133
Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira M, et al. Nanotechnology, 2008, 19(14):145605(10 pages)
Li H, Ma X Q, Cui X L. Mater. Res. Express, 2014, 1(2):025502
doi: 10.1088/2053-1591/1/2/025502
Li H, Zhang X Y, Cui X L. Int. J. Photoenergy, 2014, 2014:414281(9 pages)
CHEN Xi, LI Hui, SUN Tong, et al. Chem. J. Chinese Universities, 2013, 34(12):2855-2860
doi: 10.7503/cjcu20130314
Wang R, Sakai N, Fujishima A, et al. J. Phys. Chem. B, 1999, 103(12):2188-2194
doi: 10.1021/jp983386x
Takeuchi M, Onozaki Y, Matsumura Y, et al. Nucl. Instrum. Methods B, 2003, 206(1):259-263
Hammond J, Gaarenstroom S, Winograd N. Anal. Chem., 1975, 47(13):2193-2199
doi: 10.1021/ac60363a019
Yu W, Liu X, Chu H, et al. J. Mol. Catal. A:Chem., 2015, 407:25-31
doi: 10.1016/j.molcata.2015.06.015
Priya R, Baiju K, Shukla S, et al. J. Phys. Chem. C, 2009, 113(15):6243-6255
doi: 10.1021/jp8105343
Logar M, Jancar B, Sturm S, et al. Langmuir, 2010, 26(14):12215-12224
doi: 10.1021/la101124q
Awazu K, Fujimaki M, Rockstuhl C, et al. J. Am. Chem. Soc., 2008, 130(5):1676-1680
doi: 10.1021/ja076503n
Christopher P, Ingram D, Linic S. J. Phys. Chem. C, 2010, 114(19):9173-9177
doi: 10.1021/jp101633u
Yoshiteru M, Yoji M, Tatsuya S, et al. Ultrason. Sonochem., 2007, 14(3):387-392
doi: 10.1016/j.ultsonch.2006.08.001
Li Y, Lu G, Li S. Appl. Catal. A:Gen., 2001, 214(2):179-185
doi: 10.1016/S0926-860X(01)00491-4
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
(a) 0-TiO2, (b) 0.25%Ag2O/TiO2, (c) 0.5%Ag2O/TiO2, (d) 1%Ag2O/TiO2
(a) 0-TiO2, (b) 0.25%Ag2O/TiO2, (c) 0.5%Ag2O/TiO2, (d) 1%Ag2O/TiO2
(a) 0-TiO2, (b) 0.25%Ag2O/TiO2, (c) 0.5%Ag2O/TiO2, (d) 1%Ag2O/TiO2
(a) 0.25%Ag2O/TiO2, (b) 0.5%Ag2O/TiO2, (c) 1%Ag2O/TiO2
(a) P25, (b) 0-TiO2, (c) 0.25%Ag2O/TiO2, (d) 0.5%Ag2O/TiO2, (e) 1%Ag2O/TiO2
(a) 0-TiO2, (b) 0.25%Ag2O/TiO2, (c) 0.5%Ag2O/TiO2, (d) 1%Ag2O/TiO2, (e) P25