Two Tetrapodal Schiff Bases Acting as Colorimetric Sensors for Iron in Environmental Water Samples
- Corresponding author: JIANG Guang-Qi, gqjiang@163.com
Citation:
WANG Ruo, JIANG Guang-Qi. Two Tetrapodal Schiff Bases Acting as Colorimetric Sensors for Iron in Environmental Water Samples[J]. Chinese Journal of Inorganic Chemistry,
;2017, 33(5): 881-889.
doi:
10.11862/CJIC.2017.079
Callan J F, Silva A P, Magri D C. Tetrahedron, 2005, 61:8551-8588
doi: 10.1016/j.tet.2005.05.043
Sen S, Sarkar S, Chattopadhyay B, et al. Analyst, 2012, 137:3335-3342
doi: 10.1039/c2an35258c
Zhu J, Yuan H, Chan W, et al. Org. Biomol. Chem., 2010, 8:3957-3964
doi: 10.1039/c004871b
Valeur B, Leray I. Chem. Rev., 2000, 205:3-40
Shellaiah M, Wu Y H, Lin H C. Analyst, 2013, 138:2931-2942
doi: 10.1039/c3an36840h
Lee D Y, Singh N, Jang D O, et al. Tetrahedron Lett., 2010, 51:1103-1106
doi: 10.1016/j.tetlet.2009.12.085
H Kim, Na Y J, Song E J, et al. RSC Adv., 2014, 4:22463-22469
doi: 10.1039/c4ra02776k
Berthon G. Handbook of Metal-Ligand Interactions in Biolo-gical Fluids: Bioinorganic Medicine: Vol. 1. New York: Dekker, 1995.
Bertini I, Gray H B, Lippard S J, et al. Bioinorganic Chem-istry. Mill Valley:University Science Book, 1994.
Yang Z, Yan C, Chen Y, et al. Dalton Trans., 2011, 40:2173-2176
doi: 10.1039/C0DT01053G
Kim K B, Kim H, Song E J, et al. Dalton Trans., 2013, 42:16569-16577
doi: 10.1039/c3dt51916c
Crichton R R, Wilmet S, Legssyer R, et al. Inorg. Biochem., 2002, 91:9-18
doi: 10.1016/S0162-0134(02)00461-0
Philpott C C. J. Biol. Chem., 2012, 287:13518-13523
doi: 10.1074/jbc.R111.326876
Nomngongo P N, Ngila J C. Spectrochim. Acta B, 2014, 98:54-59
doi: 10.1016/j.sab.2014.06.001
Caldas L, Brum D M, Paula C. Talanta, 2013, 110:21-27
doi: 10.1016/j.talanta.2013.03.017
Lai T T, Zheng E H, Chen L X. Nanoscale, 2013, 5:8015-8021
doi: 10.1039/c3nr02014b
Kaya E N, Yuksel F, Ozpinar G A, et al. Sens. Actuators B, 2014, 194:377-388
doi: 10.1016/j.snb.2013.12.044
Oh J W, Kim T H, Yoo S W. Sens. Actuators B, 2013, 177:813-817
doi: 10.1016/j.snb.2012.11.066
Potts L W. Quantitative Analysis. New York:Theory and Practice, 1987:656
Arthur I V. Textbook of Macro and Semimicro Qualitative Inorganic Analysis. New York:Longman, 1979:605
Harvey D. Modern Analytical Chemistry. New York:Wiley, 2000:816
Zhang Z Y, Lu S Z, Sha C M, et al. Sens. Actuators B, 2015, 208:258-266
doi: 10.1016/j.snb.2014.10.136
Kozak J, Jodlowska N, Kozak M, et al. Anal. Chim. Acta, 2011, 702:213-217
doi: 10.1016/j.aca.2011.06.053
You G R, Park G J, Lee S A. Sens. Actuators B, 2015, 215:188-195
doi: 10.1016/j.snb.2015.03.064
Li P, Zhao Y, Yao L, et al. Sens. Actuators B, 2014, 191:332-336
doi: 10.1016/j.snb.2013.09.051
Li S H, Li Y C, Cao J. et al. Anal. Chem., 2014, 86:10201-10207
doi: 10.1021/ac503183y
Nandre J, Patil S, Patil V, et al. Biosens. Bioelectron., 2014, 61:612-617
doi: 10.1016/j.bios.2014.06.017
Goel A, Umar S, Nag P, et al. Chem. Commun., 2015, 51:5001-5004
Chen Y J, Yang S C, Tsai C C, et al. Chem. Asian J., 2015, 10:1025-1034
doi: 10.1002/asia.v10.4
Chereddy N R, Nagaraju P, Raju M, et al. Biosens. Bioelec-tron., 2015, 68:749-756
doi: 10.1016/j.bios.2015.01.074
Ju J, Chen W. Biosens. Bioelectron., 2014, 58:219-225
doi: 10.1016/j.bios.2014.02.061
Yang L, Yang W, Xu D M, et al. Dyes Pigm., 2013, 97:168-174
doi: 10.1016/j.dyepig.2012.12.016
Wang J H, Zhang D, Liu Y Q, et al. Sens. Actuators B, 2014, 191:344-350
doi: 10.1016/j.snb.2013.10.018
Wang C C, Zhang D, Huang X Y, et al. Talanta, 2014, 128:69-74
doi: 10.1016/j.talanta.2014.03.073
Wang M, Wang J G, Xue W J. Dyes Pigm., 2013, 97:475-480
doi: 10.1016/j.dyepig.2013.02.005
Jiang G Q, Cai J, Zhang Y Q, et al. J. Struct. Chem., 2012, 31:385-388
Jiang G Q, Cai J, Zhang Y Q, et al. Acta Crystallogr. Sect. E, 2008, E64:o1455
Meier M, Schubert U S. Chem. Commun., 2005, 36:4610-4612
Choi Y W, Park G J, Na Y J, et al. Sens. Actuators B, 2014, 194:343-352
doi: 10.1016/j.snb.2013.12.114
Job P. Ann. Chim., 1928, 9:113-203
Kim H, Kim K B, Song E J, et al. Chem. Comm., 2013, 36:72-76
Wang Z H, Qin Y X, Wang C, et al. Appl. Surf. Sci., 2012, 258:2017-2021
doi: 10.1016/j.apsusc.2011.05.005
Dong L, Wu C, Zeng X. Sens. Actuators B, 2010, 145:433-437
doi: 10.1016/j.snb.2009.12.057
Zhou Y M, Zhang J L, Zhou H. Spectrochim. Acta Part A, 2013, 106:68-72
doi: 10.1016/j.saa.2012.12.084
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Zhongsen Wang , Lijun Qiu , Yunhua Huang , Meng Zhang , Xi Cai , Fanyu Wang , Yang Lin , Yanbiao Shi , Xiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
Xianzheng Zhang , Yana Chen , Zhiyong Ye , Huilin Hu , Ling Lei , Feng You , Junlong Yao , Huan Yang , Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200
Xing Tian , Di Wu , Wanheng Wei , Guifu Dai , Zhanxian Li , Benhua Wang , Mingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Yunlong Li , Xinyu Zhang , Shuang Liu , Chunsheng Li , Qiang Wang , Jin Ye , Yong Lu , Jiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501
Cheng-Shuang Wang , Bing-Yu Zhou , Yi-Feng Wang , Cheng Yuan , Bo-Han Kou , Wei-Wei Zhao , Jing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080
Zhenfei Tang , Yunwu Zhang , Zhiyuan Yang , Haifeng Yuan , Tong Wu , Yue Li , Guixiang Zhang , Xingzhi Wang , Bin Chang , Dehui Sun , Hong Liu , Lili Zhao , Weijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107
Zhen Zhang , Xue-ling Chen , Xiu-Mei Xie , Tian-Yu Gao , Jing Qin , Jun-Jie Li , Chao Feng , Da-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056
Ting Pan , Dinghu Zhang , Guomei You , Xiaoxia Wu , Chenguang Zhang , Xinyu Miao , Wenzhi Ren , Yiwei He , Lulu He , Yuanchuan Gong , Jie Lin , Aiguo Wu , Guoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857
Xinyu Guo , Chang Li , Wenjun Deng , Yi Zhou , Yan Chen , Yushuang Xu , Rui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715
Haitao Yin , Liang Meng , Li Li , Jiamu Xiao , Longrui Liang , Nannan Huang , Yansong Shi , Angang Zhao , Jingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Inset 1: Job plot of sensor 1 or 2 with Fe3+ in DMSO/H2O (1: 9, V/V) solution, the total concentrations of sensors 1 or 2 and Fe3+ were 1 mmol·L-1; Inset 2: Plot of the UV-Vis absorbance at 488 nm, 519 nm as functions of Fe3+ concentration for sensors 1 and 2, respectively
Yellow bars represent the absorbance of the sensors in presence of 1 equiv. Fe (Ⅲ) and blue bars represent the absorbance of 1 or 2+Fe (Ⅲ) after the subsequent addition of other metal ions; (λmax=488 and 519 nm for sensors 1 and 2, respectively)
c1=c2=50 μmol·L-1, cFe3+=0~33.0 μmol·L-1
Water samples (from left to right) a: river water, b: tap water, c: spring water, the concentration of Fe (NO3)3 in each artificial Fe (Ⅲ) containing water sample was 0.1 mmol·L-1, and the concentration of the sensor 1 or 2 was 0.1 mmol·L-1