Citation: ZHANG Yong-Po, YANG Jia-Jia, LÜ Jia-Yuan, GAO Chun-Yan, ZHAO Jin-Zhong. Syntheses, Structures, DNA/BSA Binding and DNA Cleavage of Mononuclear Manganese(Ⅱ) and Cobalt(Ⅱ) Complexes with N,O-Chelating Quinoline Derivative Ligand[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(12): 2172-2182. doi: 10.11862/CJIC.2016.265 shu

Syntheses, Structures, DNA/BSA Binding and DNA Cleavage of Mononuclear Manganese(Ⅱ) and Cobalt(Ⅱ) Complexes with N,O-Chelating Quinoline Derivative Ligand

  • Corresponding author: GAO Chun-Yan,  ZHAO Jin-Zhong, 
  • Received Date: 15 June 2016
    Available Online: 29 September 2016

    Fund Project:

  • Two new mononuclear complexes[ML(H2O)3]·H2O (M=Mn(1) and Co(2)) of quinoline derivative ligand (Na2L=sodium 8-(carboxylatomethoxy)quinoline-2-carboxylate) have been synthesized and characterized. The complexes are isostructural and both metal centers are heptacoordinated with O6N donor sets and the geometry around metal centers can be best described as distorted pentagonal bipyramidal. Interactions of the complexes with CT-DNA and BSA have been explored by absorption and emission spectral methods. Binding abilities of the complexes to CT-DNA display a relative order:2>1, while the quenching mechanisms of BSA by both complexes are static procedures and the binding constant values follow the order:1>2. In the presence of H2O2 as a revulsant or an activator, compared with complex 1, the DNA cleavage efficiency of 2 exhibited more remarkable increases at the same conditions. Oxidative mechanism has been demonstrated by adding standard radical scavengers and the reactive oxygen species (ROS) responsible for the DNA cleavage is likely hydroxyl radicals (OH·).
  • 加载中
    1. [1]

      [1] Barone G, Terenzi A, Lauria A, et al. Coord. Chem. Rev., 2013,257(19):2848-2862

    2. [2]

      [2] Jiang Q, Xiao N, Shi P, et al. Coord. Chem. Rev., 2007,251(15):1951-1972

    3. [3]

      [3] Pages B J, Ang D L, Wright E P, et al. Dalton Trans., 2015, 44(8):3505-3526

    4. [4]

      [4] Rosenberg B, Van Camp L, Krigas T. Nature, 1965,205:698-699

    5. [5]

      [5] Rosenberg B, Van camp L. Nature, 1969,222:385-386

    6. [6]

      [6] Mjos K D, Orvig C. Chem. Rev., 2014,114(8):4540-4563

    7. [7]

      [7] Wilson J J, Lippard S J. Chem. Rev., 2013,114(8):4470-4495

    8. [8]

      [8] Storr T, Thompson K H, Orvig C. Chem. Soc. Rev., 2006,35(6):534-544

    9. [9]

      [9] Reedijk J. Proc. Natl. Acad. Sci. U.S.A., 2003,100(7):3611-3616

    10. [10]

      [10] Komor A C, Barton J K. Chem. Commun., 2013,49(35):3617-3630

    11. [11]

      [11] Leung C H, He H Z, Liu L J, et al. Coord. Chem. Rev., 2013,257(21):3139-3151

    12. [12]

      [12] Liu H K, Sadler P J. Acc. Chem. Res., 2011,44(5):349-359

    13. [13]

      [13] Aiba Y, Sumaoka J, Komiyama M. Chem. Soc. Rev., 2011, 40(12):5657-5668

    14. [14]

      [14] Munteanu C R, Suntharalingam K. Dalton Trans., 2015,44(31):13796-13808

    15. [15]

      [15] Ghosh K, Tyagi N, Kumar P. Inorg. Chem. Commun., 2010, 13(3):380-383

    16. [16]

      [16] Ghosh K, Mohan V, Kumar P, et al. Polyhedron, 2013,49(1):167-176

    17. [17]

      [17] Daniel K G, Chen D, Orlu S, et al. Breast Cancer Res., 2005,7(6):R897-R908

    18. [18]

      [18] Chen D, Peng F, Cui Q C, et al. Front. Biosci., 2005,10(2):2932-2939

    19. [19]

      [19] Zheng Q, Wang S, Liu W. Tetrahedron, 2014,70(42):7686-7690

    20. [20]

      [20] Sheldrick G M. SHELXS-97, Program for the Solution of Crystal Structure, University of Göttingen, Germany, 1997.

    21. [21]

      [21] Sheldrick G M. SHELXL-97, Program for the Refinement of Crystal Structure, University of Göttingen, Germany, 1997.

    22. [22]

      [22] Gao C Y, Ma Z Y, Zhang Y P, et al. RSC Adv., 2015,5(39):30768-30779

    23. [23]

      [23] Gao C Y, Qiao X, Ma Z Y, et al. Dalton Trans., 2012,41(39):12220-12232

    24. [24]

      [24] Zhang Y P, Ma Z Y, Gao C Y, et al. New J. Chem., 2016,40(9):7513-7521

    25. [25]

      [25] Marmur J. J. Mol. Biol., 1961,3(2):208-218

    26. [26]

      [26] Gultneh Y, Khan A R, Blaise D, et al. J. Inorg. Biochem., 1999,75(1):7-18

    27. [27]

      [27] Bernadou J, Pratviel G, Bennis F, et al. Biochemistry, 1989, 28(18):7268-7275

    28. [28]

      [28] Baldini M, Belicchi-Ferrari M, Bisceglie F, et al. Inorg. Chem., 2004,43(22):7170-7179

    29. [29]

      [29] Wolfe A, Shimer Jr G H, Meehan T. Biochemistry, 1987,26(20):6392-6396

    30. [30]

      [30] Meyer-Almes F J, Porschke D. Biochemistry, 1993,32(16):4246-4253

    31. [31]

      [31] Lakowicz J R, Weber G. Biochemistry, 1973,12(21):4171-4179

    32. [32]

      [32] Ramachandran E, Thomas S P, Poornima P, et al. Eur. J. Med. Chem., 2012,50:405-415

    33. [33]

      [33] Kellett A, O'Connor M, McCann M, et al. MedChemComm, 2011,2(7):579-584

    34. [34]

      [34] Wu H, Shi F, Wang X, et al. Transition Met. Chem., 2014, 39(3):261-270

    35. [35]

      [35] Cory M, McKee D D, Kagan J, et al. J. Am. Chem. Soc., 1985,107(8):2528-2536

    36. [36]

      [36] Ramakrishnan S, Shakthipriya D, Suresh E, et al. Inorg. Chem., 2011,50(14):6458-6471

    37. [37]

      [37] Gibellini D, Vitone F, Schiavone P, et al. J. Clin. Virol., 2004,29(4):282-289

    38. [38]

      [38] Lakowicz J R. Principles of Fluorescence Spectroscopy. 3rd Ed. New York:Springer, 2006:530-573

    39. [39]

      [39] Villarreal W, Colina-Vegas L, Rodrigues de Oliveira C, et al. Inorg. Chem., 2015,54(24):11709-11720

    40. [40]

      [40] Ware W R. J. Phys. Chem., 1962,66(3):455-458

    41. [41]

      [41] Scatchard G. Ann. N. Y. Acad. Sci., 1949,51(4):660-672

    42. [42]

      [42] Sathyadevi P, Krishnamoorthy P, Butorac R R, et al. Dalton Trans., 2011,40(38):9690-9702

    43. [43]

      [43] Hu Y J, Ou-Yang Y, Dai C M, et al. Biomacromolecules, 2009,11(1):106-112

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    3. [3]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    6. [6]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    7. [7]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    10. [10]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    15. [15]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    16. [16]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    17. [17]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    20. [20]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

Metrics
  • PDF Downloads(2)
  • Abstract views(443)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return