Citation: DONG Ke-Ke, YANG Xue-Yu, ZHAO Teng-Teng, ZHU Xiao-Lei. Exploring the Selectivity of Tetrahydropyrido[1,2-a]isoindolone Derivatives to GSK3β and CDK5 by Computational Methods[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1919-1930. doi: 10.11862/CJIC.2016.263 shu

Exploring the Selectivity of Tetrahydropyrido[1,2-a]isoindolone Derivatives to GSK3β and CDK5 by Computational Methods

  • Corresponding author: ZHU Xiao-Lei, 
  • Received Date: 11 May 2016
    Available Online: 12 September 2016

    Fund Project:

  • Tetrahydropyrido[1,2-a]isoindolone derivatives are potent inhibitors of glycogen synthase kinase 3β (GSK3β) instead of homologous cyclin-dependent kinase 5 (CDK5). Molecular docking, molecular dynamics simulation, and MM/PBSA energy calculation are utilized to reveal the kinase inhibitors' selective mechanism at the molecular level for improving selectivity. Dynamic cross-correlation map (DCCM) analysis is applied to study the effect of the inhibitor on the interactions between each residue in CDK5 and GSK3β. The results of molecular docking indicate that the binding modes of three inhibitors with two kinases are especially similar, and residues in the binding pockets of two kinases are aligned with each other based on the sequence comparing analysis of crystal structures. The analysis of Root Mean Square Deviation (RMSD) with little fluctuation underlies the stability and reliability of systems. Its values of CDK5 (~0.15 nm) are less than GSK3β (~0.17 nm), and the inhibitor with higher value holds stronger flexibility and conformational changes of kinases. In terms of energies, the electrostatic and van der Walls energies are the major interactions for differentiating the activity between the same inhibitor and two kinases. And the polar solvation energy plays pivotal role in discriminating the selectivity of kinase inhibitor. The residue decomposition indicates that the residues Glu97 and Thr138 of GSK3β are the key residues for differentiating the inhibitor selectivity. On the other hand, in the aspect of inter-residue interaction in one kinase, results indicate that the dynamic correlation of residues is different during the binding process of CDK5 and GSK3β with inhibitors. The correlation of Thr138 in the hinge domain of GSK3β with that of residues Val135~Gln206 is positive, while the correlation of Gln85 and Cys83~Ala150 in CDK5 is unclear, which is a key factor to distinguish inhibitor selectivity.
  • 加载中
    1. [1]

      [1] Frame S, Cohen P. Biochem. J., 2001,359:1-16

    2. [2]

      [2] Nurse P, Masui Y, Hartwell L. Nat. Med., 1998,4:1103-1106

    3. [3]

      [3] Sherr C J. Science, 1996,274:1672-1677

    4. [4]

      [4] Hunt T. Biosci. Rep., 2002,22:465-486

    5. [5]

      [5] Li X, Lu F, Tian Q, et al. J. Neural Transm., 2005,113:93-102

    6. [6]

      [6] Vougolkov A, Dbilladeau D. Future Oncol., 2006,2:91-100

    7. [7]

      [7] Mondragon-Rodriguez S, Perry G, Zhu X, et al. Int. J. Alzheimer's Dis., 2012,2012:1-4

    8. [8]

      [8] Rix L L, Kuenzi B M, Luo Y, et al. ACS Chem. Biol., 2014,9: 353-358

    9. [9]

      [9] Fang X, Yu S X, Lu Y, et al. PNAS, 2000,97:11960-11965

    10. [10]

      [10] Goedert M, Spillantini M G, Crowther R A. Brain Pathol., 1991,1:279-286

    11. [11]

      [11] Leroy K, Boutajangout A, Authelet M, et al. Acta Neuropathol., 2002,103:91-99

    12. [12]

      [12] Bradley C A, Peineau S, Taghibiglou C, et al. Front. Mol. Neurosci., 2012,5:1-11

    13. [13]

      [13] Rudenko A, Seo J, Hu J, et al. J. Neurosci., 2015,35:2372-2383

    14. [14]

      [14] Engmann O, Giese K P. Front. Mol. Neurosci., 2009,2:1-5

    15. [15]

      [15] Leclerc S, Garnier M, Hoessel R, et al. J. Biol. Chem., 2001, 276:251-260

    16. [16]

      [16] Mettey Y, Gompel M, Thomas V, et al. J. Med. Chem., 2003, 46:222-236

    17. [17]

      [17] Tnguyen T, Jtepe J. Curr. Med. Chem., 2009,16:3122-3143

    18. [18]

      [18] Crunkhorn S. Nat. Rev. Drug Discovery, 2015,14:457-457

    19. [19]

      [19] Berg S, Bergh M, Hellberg S, et al. J. Med. Chem., 2012,55: 9107-9119

    20. [20]

      [20] Chen Q, Cui W, Cheng Y, et al. J. Mol. Model., 2011,17: 795-803

    21. [21]

      [21] Boulahjar R, Ouach A, Matteo C, et al. J. Med. Chem., 2012, 55:9589-9606

    22. [22]

      [22] Ouach A, Boulahjar R, Vala C, et al. Eur. J. Med. Chem., 2016,115:311-325

    23. [23]

      [23] Dessalew N, Bharatam P V. Eur. J. Med. Chem., 2007,42: 1014-1027

    24. [24]

      [24] Larkin M, Blackshields G, Brown N P, et al. Bioinformatics, 2007,23:2947-2948

    25. [25]

      [25] Case D A, Cheatham T A, Simmerling C L. AMBER 10, University of California. San Francisco:San Francisco, CA, 2008.

    26. [26]

      [26] Bayly C I, Cieplak P, Cornell W D, et al. J. Phys. Chem., 1993,97:10269-10280

    27. [27]

      [27] Cieplak P, Cornell W D, Bayly C, et al. J. Comput. Chem., 1995,16:1357-1377

    28. [28]

      [28] Fox T, Kollman P A. J. Phys. Chem. B, 1998,102:8070-8079

    29. [29]

      [29] Mapelli M, Massimilinao L, Crovace C. J. Med. Chem., 2005,48:671-679

    30. [30]

      [30] Shin D, Lee S C, Heo Y S, et al. Bioorg. Med. Chem. Lett., 2007,17:5686-5689

    31. [31]

      [31] Zhao P, Li Y, Gao G, et al. Eur. J. Med. Chem., 2014,86: 165-174

    32. [32]

      [31] Wu Q, Kang H, Tian C, et al. Mol. Inf., 2013,32:251-260

    33. [33]

      [33] Aixiao L, Florent B, Franois M, et al. J. Mol. Struct. THEOCHEM, 2008,849:62-75

    34. [34]

      [34] Wang J, Wolf R M, Caldwell J W, et al. J. Comput. Chem., 2004,25:1157-1174

    35. [35]

      [35] Cornell W D, Cieplak P, Bayly C I, et al. J. Am. Chem. Soc., 1995,117:5179-519

    36. [36]

      [36] Shiekhattar R, Mermelstein F H, Fisher R P, et al. Nature, 1995,374:283-287

    37. [37]

      [37] Ryckaert J, Ciccotti G, Cberendsen H. J. Comput. Phys., 1977,23:327-341

    38. [38]

      [38] Darden T, Myork D, Gpedersen L. J. Chem. Phys., 1993,98: 10089-10092

    39. [39]

      [39] Hou T, Wang J, Li Y, et al. J. Chem. Inf. Model., 2011,51: 69-82

    40. [40]

      [40] Andricioaei I, Karplus M. J. Chem. Phys., 2001,115:6289-6292

    41. [41]

      [41] Gu Y, Wang W, Zhu X, et al. J. Mol. Model., 2014,20:1-12

    42. [42]

      [42] Andricioaei I, Karplus M. J. Chem. Phys., 2001,115:6289-6292

    43. [43]

      [43] Wang W, Cao X, Zhu X, et al. J. Mol. Model., 2013,19: 2635-2645

    44. [44]

      [44] Sa R, Fang L, Huang M, et al. J. Phys. Chem. A, 2014,118: 9113-9119

    45. [45]

      [45] Li C, Ma N, Wang Y, et al. J. Phys. Chem. B, 2014,118: 1273-1287

    46. [46]

      [46] Ichiye T, Karplus M. Proteins, 1991,11:205-217

    47. [47]

      [47] Schrodinger LLC. PyMOL Molecular Graphics System, Version 1.8, 2015.

    48. [48]

      [48] Pradeep H, Rajanikant G K. Mol. Diversity, 2012,16:553-562

    49. [49]

      [49] Dajani R, Fraser E, Roe S M, et al. Cell, 2001,105:721-732

    50. [50]

      [50] Dajani R, Fraser E, Roe S M. EMBO J., 2003,22:494-501

    51. [51]

      [51] Lobanov M Y, Bogatyreva N S, Galzitskaya O V. Mol. Biol., 2008,42:623-628

    52. [52]

      [52] ZHANG Chuan(张川), ZHANG Lu-Jia(张鲁嘉), ZHANG Yang(张洋), et al. Acta Chim. Sinica(化学学报), 2016,74: 74-80

    53. [53]

      [53] Otyepka M, Bartova I, Kriz Z, et al. J. Biol. Chem., 2006, 281:7271-7281

    54. [54]

      [54] Safi M, Lilien R H. J. Chem. Inf. Model., 2012,52:1529-1541

    55. [55]

      [55] Zhan D, Yu L, Jin H, et al. Int. J. Mol. Sci., 2014,15:17284-17303

    56. [56]

      [56] Laskowski R A, Swindells M B. J. Chem. Inf. Model., 2011, 51:2778-2786

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    4. [4]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    5. [5]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    9. [9]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    13. [13]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    14. [14]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    18. [18]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    19. [19]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(1)
  • Abstract views(339)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return