Citation: WANG Yu-Xia, QIU Dan, XI Sai-Fei, DING Zheng-Dong, GU Zhi-Guo, LI Zai-Jun. Fabrication and Magnetic Property of Spin Crossover-Graphene Oxide Nanocomposites[J]. Chinese Journal of Inorganic Chemistry, ;2016, 32(11): 1965-1972. doi: 10.11862/CJIC.2016.245 shu

Fabrication and Magnetic Property of Spin Crossover-Graphene Oxide Nanocomposites

  • Corresponding author: GU Zhi-Guo, 
  • Received Date: 28 April 2016
    Available Online: 11 August 2016

    Fund Project:

  • The in-situ growth method were used to produce the[Fe(Htrz)2(trz)](BF4)-GO nanocomposites due to the abundant oxygen functional groups on the surface of the GO templates. The[Fe(Htrz)2(trz)](BF4)-GO nanocomposites have been characterized by PXRD, FTIR, SEM, TEM, Raman spectra. The peaks of FTIR and PXRD patterns of the nanocomposites are nearly the superposition of the spectra of individual GO and[Fe(Htrz)2(trz)](BF4), demonstrating the successful formation of spin crossover-graphene oxide nanocomposites. SEM and TEM analysis intuitively shows the cubic[Fe(Htrz)2(trz)](BF4) nanoparticles uniformly anchored on the surface of GO. Additionally, with the assembly time increasing, the quantity and size of[Fe(Htrz)2(trz)](BF4) on the surface of the GO increase gradually. Raman spectra indicates that the intensity ratio of the D to G band (ID/IG) increases after the[Fe(Htrz)2(trz)](BF4) loaded onto the surface of GO, which reveals that the defects in GO materials structures increase, and the interaction between[Fe(Htrz)2(trz)](BF4) nanoparticles and GO strengthens. Magnetic measurement manifests the transition temperatures of SCO-GO nanocomposites with different assembly time (1, 6, 12 h) are 381.1, 381.5 and 382.4 K in warming, 345.9, 345.0 and 344.8 K in cooling with the hysteresis width of 35.2, 36.5 and 37.6 K, respectively. This is attributed to the variation in the capacity and size of[Fe(Htrz)2(trz)](BF4) in SCO-GO nanocomposites with different assembly time. The result of DSC analysis is consistent with the magnetic result, confirming that the spin transition temperatures of SCO-GO nanocomposites move to high temperature.
  • 加载中
    1. [1]

      [1] Gütlich P, Garcia Y, Goodwin H A. Chem. Soc. Rev., 2000, 29:419-427

    2. [2]

      [2] Bousseksou A, Molnár G, Salmon L, et al. Chem. Soc. Rev., 2011,40:3313-3335

    3. [3]

      [3] Sato O, Tao J, Zhang Y Z. Angew. Chem. Int. Ed., 2007,46: 2152-2187

    4. [4]

      [4] Maspoch D, Ruiz-Molina D, Veciana J. Chem. Soc. Rev., 2007,36:770-818

    5. [5]

      [5] Halcrow M A. Chem. Soc. Rev., 2011,40:4119-4142

    6. [6]

      [6] Ruiz E. Phy. Chem. Chem. Phy., 2014,16:14-22

    7. [7]

      [7] Martinho P N, Rajnak C, Ruben M. Spin-Crossover Materials, 2013:375-404

    8. [8]

      [8] (a) Chen Y, Ma J G, Zhang J J, et al. Chem. Commun., 2010, 46:5073-5075(b) Martinez V, Boldog I, Gaspar A B, et al. Chem. Mater., 2010,22:4271-4281(c) Titos-Padilla S, Herrera J M, Chen X W, et al. Angew. Chem. Int. Ed., 2011,50:3290-3293(d) Faulmann C, Chahine J, Malfant I, et al. Dalton Trans., 2011,40:2480-2485

    9. [9]

      [9] Rao C N R, Sood A K, Subrahmanyam K S, et al. Angew. Chem. Int. Ed., 2009,48:7752-7777

    10. [10]

      [10] Zhu Y, Murali S, Cai W, et al. Adv. Mater., 2010,22:3906-3924

    11. [11]

      [11] Huang X, Yin Z, Wu S, et al. Small, 2011,7:1876-1902

    12. [12]

      [12] (a) Yu L, Chen J, Liang Z, et al. Sep. Purif. Technol., 2016,171:80-87(b) Li M, Yin W, Han X, et al. J. Solid State Electrochem., 2016,20:1941-1948(c) Tai H, Zhen Y, Liu C, et al. Sens. Actuators B:Chem., 2016,230:501-509

    13. [13]

      [13] (a) Yadav H M, Kim J S. J. Alloys Compd., 2016,688:123-129(b) Yan N, Capezzuto F, Lavorgna M, et al. Nanoscale, 2016,8:10783-10791

    14. [14]

      [14] Qiu D, Ren D H, Gu L, et al. RSC Adv., 2014,4: 31323-31327

    15. [15]

      [15] Wick P, Louw-Gaume A E, Kucki M, et al. Angew. Chem. Int. Ed., 2014,53:7714-7718

    16. [16]

      [16] Cong H P, He J J, Lu Y, et al. Small, 2010,6:169-173

    17. [17]

      [17] (a) Chantharasupawong P, Philip R, Narayanan N T, et al. J. Phys. Chem. C, 2012,116:25955-25961(b) Allen M J, Tung V C, Kaner R B. Chem. Rev., 2009,110: 132-145

    18. [18]

      [18] Murashima Y, Karim M R, Saigo N, et al. Inorg. Chem. Front., 2015,2:886-892

    19. [19]

      [19] Cote L J, Kim J, Tung V C, et al. Pure Appl. Chem., 2010,83:95-110

    20. [20]

      [20] Erickson K, Erni R, Lee Z, et al. Adv. Mater., 2010,22: 4467-4472

    21. [21]

      [21] Bhawal P, Ganguly S, Chaki T K, et al. RSC Adv., 2016,6: 20781-20790

    22. [22]

      [22] Petit C, Bandosz T J. J. Mater. Chem., 2009,19:6521-6528

    23. [23]

      [23] Chen D, Feng H, Li J. Chem. Rev., 2012,112:6027-6053

    24. [24]

      [24] (a) Lavrenova L G, Shakirova O G. Eur. J. Inorg. Chem., 2013,2013:670-682(b) Shepherd H J, Molnár G, Nicolazzi W, et al. Eur. J. Inorg. Chem., 2013,2013:653-661(c) Kroeber J, Audiere J P, Claude R, et al. Chem. Mater., 1994,6:1404-1412

    25. [25]

      [25] (a) Bartual-Murgui C, Natividad E, Roubeau O. J. Mater. Chem. C, 2015,3:7916-7924(b) Grosjean A, Négrier P, Bordet P, et al. Eur. J. Inorg. Chem., 2013,2013:796-802(c) Durand P, Pillet S, Bendeif E E, et al. J. Mater. Chem. C, 2013,1:1933-1942(d) Giménez-Marqués M, de Larrea M L G S, Coronado E. J. Mater. Chem. C, 2015,3:7946-7953

    26. [26]

      [26] (a) Lefter C, Tan R, Dugay J, et al. Phys. Chem. Chem. Phys., 2015,17:5151-5154(b) Nagy V, Suleimanov I, Molnár G, et al. J. Mater. Chem. C, 2015,3:7897-7905(c) Qiu D, Gu L, Sun X L, et al. RSC Adv., 2014,4:61313-61319

    27. [27]

      [27] (a) Coronado E, Galán-Mascarós J R, Monrabal-Capilla M, et al. Adv. Mater., 2007,19:1359-1361(b) Dugay J, Giménez-Marqués M, Kozlova T, et al. Adv. Mater., 2015,27:1288-1293

    28. [28]

      [28] (a) Bian Z, Xu J, Zhang S, et al. Langmuir, 2015,31:7410-7417(b) Zhou Q, Zhao Z, Wang Z, et al. Nanoscale, 2014,6: 2286-2291(c) Yang J, Shen X, Zhu G, et al. RSC Adv., 2014,4:386-394

    29. [29]

      [29] Sun Y, Shao D, Chen C, et al. Environ. Sci. Technol., 2013,47:9904-9910

    30. [30]

      [30] (a) Dutta A, Ouyang J. ACS Catal., 2015,5:1371-1380(b) Lin T W, Tasi T T, Chang P L, et al. ACS Appl. Mater. Interfaces, 2016,8:8315-8322(c) Chen S, Zhu J, Wu X, et al. ACS Nano, 2010,4:2822-2830

    31. [31]

      [31] Peng H, Molnár G, Salmon L, et al. Eur. J. Inorg. Chem., 2015,2015:3336-3342

    32. [32]

      [32] (a) Wang Z, Wei R, Liu X. J. Mater. Sci., 2016,51:4682-4690(b) Chen W, Yan L. Nanoscale, 2010,2:559-563

    33. [33]

      [33] Galán-Mascarós J R, Coronado E, Forment-Aliaga A, et al. Inorg. Chem., 2010,49:5706-5714

    34. [34]

      [34] (a) Kahn O, Martinez C J. Science, 1998,279:44-48(b) Wang Y X, Qiu D, Xi S F, et al. Chem. Commun., 2016, 52:8034-8037

    35. [35]

      [35] Volatron F, Catala L, Rivière E, et al. Inorg. Chem., 2008,47:6584-6586

    36. [36]

      [36] (a) Forestier T, Kaiba A, Pechev S, et al. Chem. Eur. J., 2009,15:6122-6130(b) Neville S M, Etrillard C, Asthana S, et al. Eur. J. Inorg. Chem., 2010,2010:282-288

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    7. [7]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    8. [8]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    12. [12]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    13. [13]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    14. [14]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(0)
  • Abstract views(479)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return