Citation:
LIU Mei-Pin, HU Yu-Xiang, DU Hong-Bin. Layered Titanosilicates as Energy Storage Anode Materials for Lithium Ion Batteries[J]. Chinese Journal of Inorganic Chemistry,
;2015, (12): 2425-2431.
doi:
10.11862/CJIC.2015.315
-
Rechargeable lithium-ion batteries (LIBs) have become the dominant power source for portable devices. In search for new and better electrode materials for LIBs for future stationary storage, electronic devices and equipments, people have recently started to look over crystalline ion-exchange materials with open channels that facilitate fast lithium ion transportation through the porous network. Herein, the use of Li-exchanged titanosilicate Na-JDF-L1 with a layered structure as anode materials for LIBs was reported. It shows a discharge capacity of 364 mAh·g-1 after the 200th cycle with ca. 100% Coulombic efficiency and negligible loss of capacity, comparable with the lithium titanate anode. Furthermore, the incorporation of TiO2 in Li(Na)-JDF-L1 improves the electrochemical performance of the electrode with better initial Coulombic efficiency and higher rate performance.
-
-
-
[1]
[1] (a)Tarascon J M, Armand M. Nature, 2001,414:359-367 (b)Choi N S, Chen Z H, Freunberger S A, et al. Angew. Chem. Int. Ed., 2012,51:9994-10024
-
[2]
[2] (a)Chan C K, Patel R N, O'Connell M J, et al. ACS Nano, 2010,4:1443-1450 (b)Hatchard T D, Dahn J R. J. Electrochem. Soc., 2004,151: A838-A842 (c)Idota Y, Kubota T, Matsufuji A, et al. Science, 1997,276: 1395-1397 (d)Park C M, Sohn H J. Adv. Mater., 2007,19:2465-2466
-
[3]
[3] (a)Wu Y P, Holze R. J. Solid State Eletrochem., 2003,8:73- 78 (b)Chang J C, Tzeng Y F, Chen J M, et al. Electrochim. Acta, 2009,54:7066-7070
-
[4]
[4] (a)Jung H G, Jang M W, Hassoun J, et al. Nat. Commum., 2011,2:516 (b)Shen L F, Uchaker E, Zhang X G, et al. Adv. Mater., 2012,24:6502-6506
-
[5]
[5] Fleischhammer M, Waldmann T, Bisle G, et al. J. Power Sources, 2015,274:432-439
-
[6]
[6] Fulvio P F, Brown S S, Adcock J, et al. Chem. Mater., 2011, 23:4420-4427
-
[7]
[7] (a)Schnorr J M, Swager T M. Chem. Mater., 2011,23:646- 657 (b)Goodenough J B, Kim Y. Chem. Mater., 2010,22:587-603 (c)Manthiram A. J. Phys. Chem. Lett., 2011,2:176-178
-
[8]
[8] (a)Prakash A S, Manikandan P, Ramesha K, et al. Chem. Mater., 2010,22:2857-2863 (b)Wang Y Q, Gu L, Guo Y G, et al. J. Am. Chem. Soc., 2012,134:7874-7879 (c)Li C C, Li Q H, Chen L B, et al. ACS Appl. Mater. Interfaces, 2012,4:1233-1238
-
[9]
[9] Amine K, Belharouak I, Chen Z, et al. Adv. Mater., 2010, 22:3052-3057
-
[10]
[10] (a)Koudriachova M V, Harrison N M, de Leeuw S W. Solid State Ionics, 2003,157:35-38 (b)Vu A, Qian Y, Stein A. Adv. Energy Mater., 2012,2:1056 -1085
-
[11]
[11] (a)Rangappa D, Murukanahally K D, Tomai T, et al. Nano Lett., 2012,12:1146-1151 (b)Ellis B L, Makahnouk W R M, Makimura Y, et al. Nat. Mater., 2007,6:749-753 (c)Recham N, Chotard J N, Dupont L, et al. Nat. Mater., 2010,9:68-74 (d)Barpanda P, Ati M, Melot B C, et al. Nat. Mater., 2011, 10:772-779 (e)Tripathi R, Ramesh T N, Ellis B L, et al. Angew. Chem. Int. Ed., 2010,49:8738-8742
-
[12]
[12] Patoux S, Masquelier C. Chem. Mater., 2002,14:5057-5068
-
[13]
[13] Milne N A, Griffith C S, Hanna J V, et al. Chem. Mater., 2006,18:3192-3202
-
[14]
[14] (a)Roberts M A, Sankar G, Thomas J M, et al. Nature, 1996, 381:401-403 (b)Du H, Fang M, Chen J, et al. J. Mater. Chem., 1996,6: 1827-1830
-
[15]
[15] (a)Anderson M W, Terasaki O, Oshuna T, et al. Philos. Mag. B, 1995,71:813-841 (b)Lin Z, Rocha J, Brando P, et al. J. Phys. Chem., 1997, 101:7114-7120
-
[16]
[16] Rubio C, Casado C, Gorgojo P, et al. Eur. J. Inorg. Chem., 2010,1:159-163
-
[17]
[17] Aurbach D, Zaban A. J. Electroanal. Chem., 1995,393:43- 53
-
[18]
[18] Cao Y, Xiao L, Ai X, et al. Electrochem. Solid State, 2003, 6:A30-A33
-
[19]
[19] (a)Tang M, Newman J. J. Electrochem. Soc., 2012,159:A1922 -A1927 (b)Park M S, Kim J H, Jo Y N, et al. J. Mater. Chem., 2011, 21:17960-17966
-
[20]
[20] Yan N, Wang F, Zhong H, et al. Sci. Rep., 2013,3:1568
-
[21]
[21] (a)Spotnitz R, Franklin J. J. Power Sources, 2003,113:81- 100 (b)Lee S B, Pyun S I. Carbon, 2002,40:2333-2339 (c)He Y B, Liu M, Huang Z D, et al. J. Power Sources, 2013,239:269-276
-
[22]
[22] Jouan P Y, Peignon M C, Cardinaud C, et al. Appl. Surf. Sci., 1993,68:595-603
-
[1]
-
-
-
[1]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[2]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[3]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[4]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[5]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[6]
Feng Liang , Desheng Li , Yuting Jiang , Jiaxin Dong , Dongcheng Liu , Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009
-
[7]
Xinyu Liu , Weiran Hu , Zhengkai Li , Wei Ji , Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021
-
[8]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[9]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[10]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[11]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[12]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[13]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[14]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[15]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[16]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[17]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
-
[18]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[19]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
-
[20]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(391)
- HTML views(98)