Citation: CHEN Xi, LI Li, ZHANG Wen-Zhi, SONG Qiang, LI Yi-Xuan. Photocatalytic Performance and Photolysis Mechanism of Ag2S/ZnO with Visible-Light Response Prepared by Microwave Hydrothermal Two-Step Method[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(10): 1971-1980. doi: 10.11862/CJIC.2015.269 shu

Photocatalytic Performance and Photolysis Mechanism of Ag2S/ZnO with Visible-Light Response Prepared by Microwave Hydrothermal Two-Step Method

  • Corresponding author: LI Li, 
  • Received Date: 30 January 2015
    Available Online: 17 August 2015

    Fund Project: 国家自然科学基金(No.21376126) (No.21376126)黑龙江省自然科学基金(No.B201106、B201314) (No.B201106、B201314)黑龙江省教育厅科学技术研究项目(No.12511592) (No.12511592)黑龙江省政府博士后资助经费(No.LBH-Z11108) (No.LBH-Z11108)黑龙江省普通高校绿色化工技术重点实验室开放课题资助项目(2013年) (2013年)黑龙江省政府博士后科研启动金(No.LBH-Q13172)资助项目。 (No.LBH-Q13172)

  • Under different synthetic condition, the Ag2S/ZnO photocatalyst with visible-light response was prepared by microwave hydrothermal two-step method. The phase structures, physicochemical properties and morphologies were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance absorption (UV-Vis/DRS), Scanning electron microscopy (SEM) and N2 adsorption-desorption tests. Results indicate that the synthetic product is mainly hexagonal wurtzite ZnO, of which phase structure has been changed with the temperature of reaction and the nAg2S/nZnO increased. The presence of Ag2S enhances the light absorption of the photocatalyst under the visible-light region, redshifting the absorption band, and suppresses the growth of ZnO along the (001) crystal plane. In addition, with the nAg2S/nZnO increased, the morphology of synthetic Ag2S/ZnO realizes a transformation from the shape of popcorn to cylinder, moreover, the BET values reduce obviously. Compared to pure ZnO, when the nAg2S/nZnO was 1:10, the composite performs the highest photocatalytic activity to degrade Rhodamine B under the irradiation of ultraviolet, visible and simulated sunlight, far superior than P25 which was the most widely used at present. Moreover, there is no significant change in the degradation efficiency of Ag2S/ZnO 200° 1-10 after four times of recycling, which shows the photocatalytic stability to a certain extent. In addition, the capture experiments proved that holes brought out main effect on the photocatalytic reaction of Ag2S/ZnO. Accordingly, a potential reaction mechanism was proposed.
  • 加载中
    1. [1]

      [1] LU Yong-Hong(卢勇宏), WU Ping-Xiao(吴平宵), HUANG Jun-Yi(黄俊毅), et al. Chem. J. Chinese Universities(高等学校化学学报), 2015,36(8):1563-1569

    2. [2]

      [2] Lu L, Li L, Hu T Y, et al. J. Mol. Catal. A:Chem., 2014,394(15):283-294

    3. [3]

      [3] Li L, Huang X D, Zhang J Q, et al. J. Colloid Interface Sci., 2015,443(1):13-22

    4. [4]

      [4] LIN Cai-Fang(林彩芳), CHEN Xiao-Ping(陈小平), CHEN Shu(陈澍), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2015,31(1):153-158

    5. [5]

      [5] LI Li(李莉), LU Dan(陆丹), ZHAO Yue-Hong(赵月红), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27(3):451-456

    6. [6]

      [6] Hong J I, Choi J, Jang S S, et al. Nano Lett., 2012,12(2):576-581

    7. [7]

      [7] Hu Y, Klein B D B, Su Y, et al. Nano Lett., 2013,13(11):5026-5032

    8. [8]

      [8] Sun H, Zhang Q, Zhang J, et al. Appl. Phys. B, 2008,90(3/4):543-546

    9. [9]

      [9] Benramache S, Benhaoua B, Bentrah H. J. Nanostruct. Chem., 2013,3(1):54

    10. [10]

      [10] Chen C Y, Huang J H, Song J H, et al. ACS Nano, 2011,5(8):6707-6713

    11. [11]

      [11] Balachandran S, Prakash N, Thirumalai K, et al. Ind. Eng. Chem. Res., 2014,53(20):8346-8356

    12. [12]

      [12] Kandula S and Jeevanandam P. J. Nanopart. Res., 2014,16:2452

    13. [13]

      [13] Li L, Wang L L, Hu T Y, et al. Colloids Surf. A, 2014,457(5):134-141

    14. [14]

      [14] Lovingood D D, Owens J R, Seeber M, et al. ACS Appl. Mater. Interfaces, 2012,4(12):6875-6883

    15. [15]

      [15] Kou J, Stamper C B, Varma R S. ACS Sustainable Chem. Eng., 2013,1(7):810-816

    16. [16]

      [16] Chen X, Li L, Yi T T, et al. J. Solid State Chem., 2015, 229:141-149

    17. [17]

      [17] Thalluri S M, Suarez C M, Hussain M, et al. Ind. Eng. Chem. Res., 2013,52(49):17414-17415

    18. [18]

      [18] Cao S W, Yin Z, Barber J, et al. ACS Appl. Mater. Interfaces, 2012,4(1):418-423

    19. [19]

      [19] Wu T S, Wang K X, Li G D, et al. ACS Appl. Mater. Interfaces, 2010,2(2):544-550

    20. [20]

      [20] WU Guang-Li(武广利), ZHAO Xiao-Hua(赵晓华), LI Meng (李萌), et al. Chinese J. Inorg. Chem.(无机化学学报), 2015(1):61-68

    21. [21]

      [21] Moulder J F, Stick W F, Sobol P E, et al. Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie:Perkin-Elmer. Corp., 1992:182-183

    22. [22]

      [22] ZOU Wen(邹文), HAO Wei-Chang(郝维昌), XIN Xin(信心), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009,25(11):1971-1976

    23. [23]

      [23] Lin S, Feng Y, Wen X M, et al. J. Phys. Chem. C, 2015,119(1):867-872

  • 加载中
    1. [1]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    6. [6]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    9. [9]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    13. [13]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(0)
  • Abstract views(336)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return