Citation:
CHEN Xi, LI Li, ZHANG Wen-Zhi, SONG Qiang, LI Yi-Xuan. Photocatalytic Performance and Photolysis Mechanism of Ag2S/ZnO with Visible-Light Response Prepared by Microwave Hydrothermal Two-Step Method[J]. Chinese Journal of Inorganic Chemistry,
;2015, 31(10): 1971-1980.
doi:
10.11862/CJIC.2015.269
-
Under different synthetic condition, the Ag2S/ZnO photocatalyst with visible-light response was prepared by microwave hydrothermal two-step method. The phase structures, physicochemical properties and morphologies were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance absorption (UV-Vis/DRS), Scanning electron microscopy (SEM) and N2 adsorption-desorption tests. Results indicate that the synthetic product is mainly hexagonal wurtzite ZnO, of which phase structure has been changed with the temperature of reaction and the nAg2S/nZnO increased. The presence of Ag2S enhances the light absorption of the photocatalyst under the visible-light region, redshifting the absorption band, and suppresses the growth of ZnO along the (001) crystal plane. In addition, with the nAg2S/nZnO increased, the morphology of synthetic Ag2S/ZnO realizes a transformation from the shape of popcorn to cylinder, moreover, the BET values reduce obviously. Compared to pure ZnO, when the nAg2S/nZnO was 1:10, the composite performs the highest photocatalytic activity to degrade Rhodamine B under the irradiation of ultraviolet, visible and simulated sunlight, far superior than P25 which was the most widely used at present. Moreover, there is no significant change in the degradation efficiency of Ag2S/ZnO 200° 1-10 after four times of recycling, which shows the photocatalytic stability to a certain extent. In addition, the capture experiments proved that holes brought out main effect on the photocatalytic reaction of Ag2S/ZnO. Accordingly, a potential reaction mechanism was proposed.
-
-
-
[1]
[1] LU Yong-Hong(卢勇宏), WU Ping-Xiao(吴平宵), HUANG Jun-Yi(黄俊毅), et al. Chem. J. Chinese Universities(高等学校化学学报), 2015,36(8):1563-1569
-
[2]
[2] Lu L, Li L, Hu T Y, et al. J. Mol. Catal. A:Chem., 2014,394(15):283-294
-
[3]
[3] Li L, Huang X D, Zhang J Q, et al. J. Colloid Interface Sci., 2015,443(1):13-22
-
[4]
[4] LIN Cai-Fang(林彩芳), CHEN Xiao-Ping(陈小平), CHEN Shu(陈澍), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2015,31(1):153-158
-
[5]
[5] LI Li(李莉), LU Dan(陆丹), ZHAO Yue-Hong(赵月红), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27(3):451-456
-
[6]
[6] Hong J I, Choi J, Jang S S, et al. Nano Lett., 2012,12(2):576-581
-
[7]
[7] Hu Y, Klein B D B, Su Y, et al. Nano Lett., 2013,13(11):5026-5032
-
[8]
[8] Sun H, Zhang Q, Zhang J, et al. Appl. Phys. B, 2008,90(3/4):543-546
-
[9]
[9] Benramache S, Benhaoua B, Bentrah H. J. Nanostruct. Chem., 2013,3(1):54
-
[10]
[10] Chen C Y, Huang J H, Song J H, et al. ACS Nano, 2011,5(8):6707-6713
-
[11]
[11] Balachandran S, Prakash N, Thirumalai K, et al. Ind. Eng. Chem. Res., 2014,53(20):8346-8356
-
[12]
[12] Kandula S and Jeevanandam P. J. Nanopart. Res., 2014,16:2452
-
[13]
[13] Li L, Wang L L, Hu T Y, et al. Colloids Surf. A, 2014,457(5):134-141
-
[14]
[14] Lovingood D D, Owens J R, Seeber M, et al. ACS Appl. Mater. Interfaces, 2012,4(12):6875-6883
-
[15]
[15] Kou J, Stamper C B, Varma R S. ACS Sustainable Chem. Eng., 2013,1(7):810-816
-
[16]
[16] Chen X, Li L, Yi T T, et al. J. Solid State Chem., 2015, 229:141-149
-
[17]
[17] Thalluri S M, Suarez C M, Hussain M, et al. Ind. Eng. Chem. Res., 2013,52(49):17414-17415
-
[18]
[18] Cao S W, Yin Z, Barber J, et al. ACS Appl. Mater. Interfaces, 2012,4(1):418-423
-
[19]
[19] Wu T S, Wang K X, Li G D, et al. ACS Appl. Mater. Interfaces, 2010,2(2):544-550
-
[20]
[20] WU Guang-Li(武广利), ZHAO Xiao-Hua(赵晓华), LI Meng (李萌), et al. Chinese J. Inorg. Chem.(无机化学学报), 2015(1):61-68
-
[21]
[21] Moulder J F, Stick W F, Sobol P E, et al. Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie:Perkin-Elmer. Corp., 1992:182-183
-
[22]
[22] ZOU Wen(邹文), HAO Wei-Chang(郝维昌), XIN Xin(信心), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009,25(11):1971-1976
-
[23]
[23] Lin S, Feng Y, Wen X M, et al. J. Phys. Chem. C, 2015,119(1):867-872
-
[1]
-
-
-
[1]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[2]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[3]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016
-
[4]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[5]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[6]
Xiaofei Zhang , Shanhao Xu , Zhiyuan Wang , Long He , Tiangcheng Huang , Yongming Xu , Yucui Bian , Yike Li , Haijun Chen , Zhongjun Li . Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light. Acta Physico-Chimica Sinica, 2026, 42(5): 100202-0. doi: 10.1016/j.actphy.2025.100202
-
[7]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
-
[8]
Deyun Ma , Fenglan Liang , Qingquan Xue , Yanping Liu , Chunqiang Zhuang , Shijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190
-
[9]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[10]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[11]
Bowen Liu , Jianjun Zhang , Han Li , Bei Cheng , Chuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121
-
[12]
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
-
[13]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[14]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[15]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[16]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[17]
Jingjing Liu , Aoqi Wei , Hao Zhang , Shuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185
-
[18]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[19]
Ze Luo , Yukun Zhu , Yadan Luo , Guangmin Ren , Yonghong Wang , Hua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166
-
[20]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(658)
- HTML views(75)
Login In
DownLoad: