Citation: CHEN Xi, LI Li, ZHANG Wen-Zhi, SONG Qiang, LI Yi-Xuan. Photocatalytic Performance and Photolysis Mechanism of Ag2S/ZnO with Visible-Light Response Prepared by Microwave Hydrothermal Two-Step Method[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(10): 1971-1980. doi: 10.11862/CJIC.2015.269 shu

Photocatalytic Performance and Photolysis Mechanism of Ag2S/ZnO with Visible-Light Response Prepared by Microwave Hydrothermal Two-Step Method

  • Corresponding author: LI Li, 
  • Received Date: 30 January 2015
    Available Online: 17 August 2015

    Fund Project: 国家自然科学基金(No.21376126) (No.21376126)黑龙江省自然科学基金(No.B201106、B201314) (No.B201106、B201314)黑龙江省教育厅科学技术研究项目(No.12511592) (No.12511592)黑龙江省政府博士后资助经费(No.LBH-Z11108) (No.LBH-Z11108)黑龙江省普通高校绿色化工技术重点实验室开放课题资助项目(2013年) (2013年)黑龙江省政府博士后科研启动金(No.LBH-Q13172)资助项目。 (No.LBH-Q13172)

  • Under different synthetic condition, the Ag2S/ZnO photocatalyst with visible-light response was prepared by microwave hydrothermal two-step method. The phase structures, physicochemical properties and morphologies were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance absorption (UV-Vis/DRS), Scanning electron microscopy (SEM) and N2 adsorption-desorption tests. Results indicate that the synthetic product is mainly hexagonal wurtzite ZnO, of which phase structure has been changed with the temperature of reaction and the nAg2S/nZnO increased. The presence of Ag2S enhances the light absorption of the photocatalyst under the visible-light region, redshifting the absorption band, and suppresses the growth of ZnO along the (001) crystal plane. In addition, with the nAg2S/nZnO increased, the morphology of synthetic Ag2S/ZnO realizes a transformation from the shape of popcorn to cylinder, moreover, the BET values reduce obviously. Compared to pure ZnO, when the nAg2S/nZnO was 1:10, the composite performs the highest photocatalytic activity to degrade Rhodamine B under the irradiation of ultraviolet, visible and simulated sunlight, far superior than P25 which was the most widely used at present. Moreover, there is no significant change in the degradation efficiency of Ag2S/ZnO 200° 1-10 after four times of recycling, which shows the photocatalytic stability to a certain extent. In addition, the capture experiments proved that holes brought out main effect on the photocatalytic reaction of Ag2S/ZnO. Accordingly, a potential reaction mechanism was proposed.
  • 加载中
    1. [1]

      [1] LU Yong-Hong(卢勇宏), WU Ping-Xiao(吴平宵), HUANG Jun-Yi(黄俊毅), et al. Chem. J. Chinese Universities(高等学校化学学报), 2015,36(8):1563-1569

    2. [2]

      [2] Lu L, Li L, Hu T Y, et al. J. Mol. Catal. A:Chem., 2014,394(15):283-294

    3. [3]

      [3] Li L, Huang X D, Zhang J Q, et al. J. Colloid Interface Sci., 2015,443(1):13-22

    4. [4]

      [4] LIN Cai-Fang(林彩芳), CHEN Xiao-Ping(陈小平), CHEN Shu(陈澍), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2015,31(1):153-158

    5. [5]

      [5] LI Li(李莉), LU Dan(陆丹), ZHAO Yue-Hong(赵月红), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27(3):451-456

    6. [6]

      [6] Hong J I, Choi J, Jang S S, et al. Nano Lett., 2012,12(2):576-581

    7. [7]

      [7] Hu Y, Klein B D B, Su Y, et al. Nano Lett., 2013,13(11):5026-5032

    8. [8]

      [8] Sun H, Zhang Q, Zhang J, et al. Appl. Phys. B, 2008,90(3/4):543-546

    9. [9]

      [9] Benramache S, Benhaoua B, Bentrah H. J. Nanostruct. Chem., 2013,3(1):54

    10. [10]

      [10] Chen C Y, Huang J H, Song J H, et al. ACS Nano, 2011,5(8):6707-6713

    11. [11]

      [11] Balachandran S, Prakash N, Thirumalai K, et al. Ind. Eng. Chem. Res., 2014,53(20):8346-8356

    12. [12]

      [12] Kandula S and Jeevanandam P. J. Nanopart. Res., 2014,16:2452

    13. [13]

      [13] Li L, Wang L L, Hu T Y, et al. Colloids Surf. A, 2014,457(5):134-141

    14. [14]

      [14] Lovingood D D, Owens J R, Seeber M, et al. ACS Appl. Mater. Interfaces, 2012,4(12):6875-6883

    15. [15]

      [15] Kou J, Stamper C B, Varma R S. ACS Sustainable Chem. Eng., 2013,1(7):810-816

    16. [16]

      [16] Chen X, Li L, Yi T T, et al. J. Solid State Chem., 2015, 229:141-149

    17. [17]

      [17] Thalluri S M, Suarez C M, Hussain M, et al. Ind. Eng. Chem. Res., 2013,52(49):17414-17415

    18. [18]

      [18] Cao S W, Yin Z, Barber J, et al. ACS Appl. Mater. Interfaces, 2012,4(1):418-423

    19. [19]

      [19] Wu T S, Wang K X, Li G D, et al. ACS Appl. Mater. Interfaces, 2010,2(2):544-550

    20. [20]

      [20] WU Guang-Li(武广利), ZHAO Xiao-Hua(赵晓华), LI Meng (李萌), et al. Chinese J. Inorg. Chem.(无机化学学报), 2015(1):61-68

    21. [21]

      [21] Moulder J F, Stick W F, Sobol P E, et al. Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie:Perkin-Elmer. Corp., 1992:182-183

    22. [22]

      [22] ZOU Wen(邹文), HAO Wei-Chang(郝维昌), XIN Xin(信心), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009,25(11):1971-1976

    23. [23]

      [23] Lin S, Feng Y, Wen X M, et al. J. Phys. Chem. C, 2015,119(1):867-872

  • 加载中
    1. [1]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    2. [2]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    3. [3]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    6. [6]

      Xiaofei ZhangShanhao XuZhiyuan WangLong HeTiangcheng HuangYongming XuYucui BianYike LiHaijun ChenZhongjun Li . Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light. Acta Physico-Chimica Sinica, 2026, 42(5): 100202-0. doi: 10.1016/j.actphy.2025.100202

    7. [7]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    8. [8]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    12. [12]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    13. [13]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    17. [17]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    18. [18]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    19. [19]

      Ze LuoYukun ZhuYadan LuoGuangmin RenYonghong WangHua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166

    20. [20]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

Metrics
  • PDF Downloads(0)
  • Abstract views(658)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return