Citation: ZHAO Ning-Ning, HE Cui-Cui, WANG Tong, AN Ting, ZHAO Feng-Qi, HU Rong-Zu, MA Hai-Xia. Nano-WO3: Preparation, Characterization and Effect on Thermal Decomposition of Hexanitrohexaazaisowurtzitane[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(10): 1959-1965. doi: 10.11862/CJIC.2015.263 shu

Nano-WO3: Preparation, Characterization and Effect on Thermal Decomposition of Hexanitrohexaazaisowurtzitane

  • Corresponding author: MA Hai-Xia, 
  • Received Date: 13 January 2015
    Available Online: 16 July 2015

    Fund Project: 国家自然科学基金(No.21073141,21373161) (No.21073141,21373161)教育部新世纪优秀人才支持计划基金(No.12-1047) (No.12-1047)高等学校博士学科点专项科研基金(No.20126101110009) (No.20126101110009)燃烧与爆炸技术重点实验室基金(No.9140C3501041001)资助项目。 (No.9140C3501041001)

  • The cuboid-shaped WO3 nanoparticles were prepared by the hydrothermal method with controlling the amount of reactant and reaction time, then the as-prepared particles were characterized by X-ray powder diffraction (XRD), transmission electron microscope (TEM), and scanning electron microscope-energy dispersive spectrometry (SEM-EDS). The Effects of WO3 powders on the thermal decomposition of hexanitrohexaazaisowur-tzitane (CL-20) were investigated by differential scanning calorimetry (DSC). The results show that the peak temperature of the decomposition and the activation energy of WO3/CL-20 have 2.95℃ and 7.74 kJ·mol-1 lower than that of CL-20, indicating that nano-WO3 could accelerate the thermal decomposition of CL-20.
  • 加载中
    1. [1]

      [1] Li X L, Lou T J, Sun X M, et al. Inorg. Chem., 2004,43(17):5442-5449

    2. [2]

      [2] WANG Chao(王超), XU You(许友), ZHANG Bing(张兵). Chinese J. Inorg. Chem.(无机化学学报), 2014,30(7):1575-1581

    3. [3]

      [3] Gondal M A, Dastageer M A, Khalil A. Catal. Commun., 2009,11(3):214-219

    4. [4]

      [4] Baek Y, Yong K. J. Phys. Chem. C, 2007,111(3):1213-1218

    5. [5]

      [5] Wang Z, Sun P, Yang T, et al. Sensor Lett., 2013,11(2):423-427

    6. [6]

      [6] Zhang G, Guan W, Shen H, et al. Ind. Eng. Chem. Res., 2014,53(13):5443-5450

    7. [7]

      [7] Mwakikunga B W, Sideras-Haddad E, Forbes A, et al. Phys. Status Solidi A, 2008,205(1):150-154

    8. [8]

      [8] Mwakikunga B W, Forbes A, Sideras-Haddad E, et al. Nanoscale Res. Lett., 2010,5(2):389-397

    9. [9]

      [9] Yagi M, Maruyama S, Sone K, et al. J. Solid State Chem., 2008,181(1):175-182

    10. [10]

      [10] Lee S H, Deshpande R, Parilla P A, et al. Adv. Mater., 2006, 18(6):763-766

    11. [11]

      [11] Wang J, Khoo E, Lee P S, et al. J. Phys. Chem. C, 2008, 112(37):14306-14312

    12. [12]

      [12] Wang J, Khoo E, Lee P S, et al. J. Phys. Chem. C, 2009, 113(22):9655-9658

    13. [13]

      [13] Ou J Z, Balendhran S, Field M R, et al. Nanoscale, 2012,4(19):5980-5988

    14. [14]

      [14] WEI Xiao-Lan(魏小兰), SHEN Pei-Kang(沈培康). Sci. China Ser. B(中国科学:B辑), 2005,35(4):291-295

    15. [15]

      [15] YU Xian-Feng(于宪峰). Chin. J. Expls. Propell.(火炸药学报), 2004,27(3):78-80

    16. [16]

      [16] LIU Xin-Jin(刘新锦), LUO Chao-Jun(罗朝军), HUANG Tie-Gang(黄铁钢). J. Xiamen Univ.(厦门大学学报), 1996,35(5):750-754

    17. [17]

      [17] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), GAO Hong-Xu(高红旭). Chin. J. Mater. Eng.(材料工程), 2011,11:23-28,34

    18. [18]

      [18] LIU Zi-Ru(刘子如). Thermal Analyses for Energetic Materials (含能材料热分析). Beijing:National Defense Industry Press, 2008:21-22

    19. [19]

      [19] YAN Qi-Long(严启龙), LI Xiao-Jiang(李笑江), LIAO Lin-Quan(廖林泉), et al. Chin. Energ. Mater.(含能材料), 2008, 16(3):309-314

    20. [20]

      [20] Kissinger H E. Anal. Chem., 1957,29(11):1702-1706

    21. [21]

      [21] Ozawa T B. Chem. Soc. Jpn., 1965,38(11):1881-1886

    22. [22]

      [22] HU Rong-Zu(胡荣祖), SHI Qi-Zhen(史启祯). Thermal Analysis Kinetics(热分析动力学). Beijing:Science Press, 2001:127-131

    23. [23]

      [23] Hu R Z, Yang Z Q, Liang Y J. Thermochim Acta, 1988,123:135

    24. [24]

      [24] Volk F. Propell. Explos. Pyrot., 1985,10:139-146

    25. [25]

      [25] Williams G K, Palopoli S F, Brill T B. Combust. Flame, 1994,98:197-204

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    8. [8]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    9. [9]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    10. [10]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    14. [14]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    15. [15]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    16. [16]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    17. [17]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    18. [18]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    19. [19]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    20. [20]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

Metrics
  • PDF Downloads(0)
  • Abstract views(620)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return